Probing the limits
of fake-quantised neural networks

Matteo Spallanzani, IIS, D-ITET, ETH Ziirich
Renzo Andri, Huawei Technologies Switzerland AG

1 Introduction

The last decade has witnessed an unprecedented surge in the interest for ma-
chine learning systems, and in particular for deep neural networks (DNNs).
DNNs have risen to prominence mostly due to two factors: the increase in
quantity, size, and quality of labelled data sets, containing sufficient informa-
tion to characterise complex relationships; and the increase in computing power
due to programmable, parallel hardware, optimised to execute programs which
are trivially parallelisable and have data-independent control flows.

Given a DNN ”A” that solves a task, a machine learning engineer can im-
prove its accuracy by changing the network topology to derive a more effective
DNN ”B”. However, these changes often involve increasing the computational
complexity, i.e., the number of network parameters and operations. When ”B”
has more parameters than ”A”, this implies that the computing system ”T”
executing "B” requires larger storage and memory than the computing system
7S” executing ”A”. When ”B” requires more operations than ” A” | if we suppose
that both networks must process a given amount of data points in a reference
time interval (i.e., that they must reach a target application throughput), ”T”
must be able to execute more operations per unit of time than ”S”, i.e., it must
have higher throughput (Op/s). This reasoning shows that more powerful com-
putational resources can be sufficient to scale up task accuracy; but are they
necessary? And, more importantly, can we always assume that it is possible to
scale up computational resources?

In many applications, constraints such as application latency and data pri-
vacy make it desirable to perform inference directly were the data is produced,
often on embedded, mobile, and edge devices (i.e., Internet-of-things (IoT)
nodes). These computing systems have limited storage and memory with respect
to high-performance computing (HPC) clusters and workstations, where DNNs
are typically executed. Moreover, they are often battery-powered, meaning that
they can not exceed hard constraints on total energy consumption (J) or peak
power (W). For this reason, the research field of TinyML has focussed on cre-
ating machine learning systems that are not only effective, but also efficient in
terms of storage, memory and energy requirements.

Several strategies have been explored to improve the efficiency of DNNs and
enable their deployment on resource-constrained computing devices. Topologi-
cal optimisations have focussed on developing network topologies that are effi-
cient in terms of accuracy-per-parameter or accuracy-per-operation [1]. Other
strategies have focussed on reducing model size by means of techniques such as
parameter pruning [2]. Finally, quantised neural networks (QNNs) have been
proposed to replace high-bit-width, energy-costly floating-point operands with
low-bit-width, energy-efficient integer operands, with the double benefit of re-
ducing model size and replacing floating-point operations with much simpler
integer operations [3]. Recent research has shown that DNN operands can be
quantised to low-bit-width integers without deteriorating the system’s perfor-
mance [4]. These properties make QNNs an extremely good fit for embedded
devices, which usually have limited storage and memory, have limited support
for floating-point arithmetic, and are optimised for executing integer arithmetic
using single instruction, multiple data (SIMD) ISA extensions.

QNNs are usually trained on HPC clusters and workstations to leverage the
optimised software kernels provided by the most popular deep learning frame-
works such as TensorFlow or PyTorch. At training time, QNNs use floating-
point operands to exploit the efficiency of floating-point calculations on mas-
sively parallel accelerators, such as NVidia’s GPGPUs; these operands are con-
strained in such a way to enable the conversion of these fake-quantised (FQ)
networks into fully integerised programs that can be executed efficiently on
embedded hardware at inference time. We name these integerised programs
true-quantised (TQ) networks.

Unfortunately, converting a FQ network to a TQ one is a lossy process.
Limiting such losses is a delicate but fundamental problem in QNN practice. In
this project, we will explore the discrepancies between the FQ and TQ versions
of QNNs that arise when using different floating-point representations during
the FQ training stage.

Why do we use fake-quantisation?

In principle, we could use integer operands directly at training time. So why do
we use FQ arrays when training QNNs? Using integer operands would require us
to replace the optimised floating-point software kernels used by the chosen deep
learning framework with counterparts that can handle integer data types. The
cost of the design, implementation and testing activities implied by this choice
would anyway not compensate the payoff: GPGPUs are optimised to carry
out multiplications between large matrices of floating-point numbers, whereas
it is significantly less efficient to perform integer operations. Moreover, it is
usually assumed that training a QNN using integer arithmetic would generate
numerically unstable gradients; however, to the best of our knowledge neither a
formal nor an experimental analysis exists proving this point.

2 Background and problem definition
2.1 Feedforward DNNs

For simplicity, in this work we will only consider feedforward network topologies,
i.e., DNNs for which the graph determined by its artificial neurons is acyclic.
Examples of feedforward topologies are AlexNet, VGG, and MobileNetV1 [5, 6,
1].

From a functional perspective, feedforward DNNs are compositions of layer
maps. Given L € N, L > 1, and a collection of positive integers n°, ..., n", each

layer map takes the following form:

gpe s X xt

1
Xf—l — Cl(wixf—l 4 bl)’ ()

where X¢~1 C R"z_l,XZ C R™ are the representation spaces or feature spaces,
W e M7 "N(R) is the (-th weight matriz, b® € R is the bias vector, and
¢t R™ 5 R isa non-constant, non-linear activation function. In particular,
¢! is the element-wise application of n non-constant functions (:fe R R, i =
1,...,n% of which at least one is non-linear:

CHWT) = (WX) B, CLel(whe X1 4 00))
In this formalism, a feedforward DNN is a composition of layer maps (1):
P =¢plo. opl. (2)

Modern feedforward networks, and especially convolutional neural networks
(CNNs), apply the so-called batch normalisation transform in between the lin-
ear and non-linear parts of (1) to increase task accuracy [7]. Given vector
parameters put, of,~¢, B¢ € R”Z, a batch-normalised layer map acts as follows:

()OK(X271) _ CZ (((foffl +b€ . uf) /@0’2) X6 ,yf +6f) :

here, /o represents component-wise division, whereas X o represents component-
wise multiplication. In particular, the bias vector is usually folded in the mean
vector, yielding

(pé(xé—l) _ CZ ((WZXZ—l) /@ X6 ,Ylé +ﬂ/£) , (3)

where v = ~v"/o0’, and B = (—pu’ xo 7' + B x5 o) /50",
If we consider a single artificial neuron, the neuron map acts as follows:

oh (xY) = ¢F((wh, x 8L, (4)

where i* € {1,...,n’}. To avoid overloading the notation unnecessarily, we will
drop the neuron index ¢ when the distinction will be irrelevant.

2.2 Quantisers

Given K € N, K > 1, a K-quantiser (or simply quantiser) is a function

K—-1

s@) =) xn(z)ax,

k=0
where Q = {qo < -+ < gqx-1} C R is the collection of quantisation levels,
X1 is the indicator function of I C R, and {Iy,...,Ix_1} is a partition of
R composed by non-intersecting, successive intervals (bins). In particular, we
usually consider a set of thresholds © = {6, < -+ < Ox_1} C R and define
Iy = (—00,61), Iy == [0k, 0k+1) for k=1,..., K — 2, and Ix_1 == [fx_1,+00).
This definition shows that quantisers are piece-wise constant, monotonically
increasing functions, and that they can be computed in two steps: binning, i.e.,
computing the bin index k(z), and dequantisation, i.e., mapping k(x) to the
output value gx. When x = (z1,...,x,) € R" is a multi-dimensional vector, we
define the convention ¢(x) = (¢(z1),...,s(zx)).

When the number K of bins is low, threshold-based operations can be imple-
mented by means of look-up tables. However, when K is large the application
of a threshold-based quantiser might become too costly. A simplification com-
monly used in literature is assuming that there exist zo € Z,ece € RT such that
Or =eco(k+ z0),k=1,..., K — 1, then computing

k(z) = clip(|z/ee] — 20,0, K — 1), (5)

where [t| = max{i € N|i < t} is the flooring operation and clip(t,a,b) =
max{a, min{t,b}},a,b € R,a < b is the clipping operation.

Given a precision B € N, we can link quantisers to integer arithmetic by
considering K = 27 and assuming that exist z € Z,e € R* such that the
dequantisation can be computed as

qgr =¢k+2),k=0,..., K —1. (6)

z is called the offset or zero-point of the quantiser, whereas € is its scale or
quantum. The most common quantisers used in the literature fuse (5) and (6)
by setting z¢ = z and €g = €:
(@) = e(cliplla/e), 0+ 2, K — 14 2)). (7)
We say that an array x € R” is fake-quantised if there exist z € Z,ex €
R such that #; = exd;,i = 1,...,n, where &; € {0+ 2,...,28 — 1 + 2}.
The importance of fake-quantised arrays is quickly explained. Given two fake-
quantised arrays w,x € R", we can use basic arithmetic properties to rewrite

n
<\XI7 5(> = Z EW’LZIZ‘EXZE,L'
=1

From the perspective of hardware arithmetic, a dot product between fake-
quantised arrays can be transformed into a product between a floating-point
scalar and the result of the dot product between integer arrays.

Given an array x € R”, we can get a fake-quantised array by applying a
quantiser (7) to each component:

X = Sz E(X)

)

2.3 Fake-quantised and true-quantised neurons

Fake-quantised QNNs use specific neuron maps (4). In particular, they take
as input a fake-quantised feature array x‘~! = e,.-1 %1, use a fake-quantised
weight array w’ = e, W', and apply a quantiser (7) with quantum e, as their

activation function, producing a fake-quantised number as output:

sl Gl—1\ 10 A
je-l:execlip(vw’x 27 + 5 J,a,b).

€x

FQ neuron maps are named "fake” because we can turn them into fully-
integerised functions by means of basic arithmetic properties, in a process named
fake-to-true (F2T) conversion. But how does this process work?

Consider the first argument of the clipping function. Thanks to the distribu-
tive property of real arithmetic, we can rewrite it as

{ <V~Vé 5((—1 >,y/€ ﬁ/ZJ
et el |’
Thanks to the definition of fake-quantised array, we can rewrite this as

\‘<v~vé’}~{€—l>,y/£ N BIZJ {<€wzwé7exz1ﬁ€_1>7'e B/ZJ

7 2 7 7

By the linearity of the dot product, we can rewrite the right-hand side as

<VAV€, %1 >€wf Ext1 7/@ B/f
€l e |’

where we see that the dot product now involves only integer arrays. Thanks to
the associative property of real arithmetic, we can further rewrite this as

17 174

0 oy €l €Eql—1 15}
\‘<WZ7X€ 1> w xe v ZJ)

6)(6)(

Now let D € N; given any positive real number z € RT, we can observe that

oD _ | z2P
T 2|

D—+00 2D =0

because 220 — 227 | € [0,1) and limp_, o 2 = +00. Therefore, the following
holds true':

lim K<W1&’§(z—1>,&e+34) /QDJ _ Vwé,ké—l)W + ﬁ;J ,

D—+o0 €x €

where 4 = |2Peyeexe-17" /el] and B¢ = [2P B¢/l |. If we choose D suffi-
ciently large, we can therefore approximate

Vwe’iewwﬁ_ﬁjJ ~ K<we’§(zflwe+ﬁe) /QDJ . (10)

€x €x

Note that 4, BZ are integers. Also, supposing that ¢ is a number represented
in binary format, the operation |t/2% | can be implemented in digital hardware
as a right-shift of ¢’s representation by D positions, followed by a truncation
of its decimal part. Since in (10) ¢ is an integer, this operation corresponds to
truncating its D least significant bits (LSBs).

We name the right-hand side in (10) the TQ representation of the neuron
map (9). With some adaptations, the F2T conversion process can be scaled up
to a full layer map (3), and from there to a complete network (2).

2.4 The problem of F2T conversion

The standard representation for real numbers in digital hardware is the floating-
point numeric data format. Unfortunately, most real (and therefore also fake-
quantised) numbers do not have an exact representation in the floating-point
format. Moreover, floating-point arithmetic does not satisfy the most conve-
nient properties that are enjoyed by real arithmetic: for instance, floating-point
arithmetic is non-associative and non-distributive.

Most of the rewritings operated in the previous sub-section relied on the
properties of real arithmetic. In practical F2T conversions, errors can be intro-
duced at each step due to the violations of these properties on part of floating-
point arithmetic. In its simplest form, our question is the following: how large
can be the difference

{<€wzwe76x41&€_1>7/€ + BMJ - \‘<<VAVZ7§(€—1>,3/ + Bé) /QDJ ? (11)

€

Given a,b € Rj,a < b, the inequality [b — a| < |b] — |a] always holds.
Therefore, we can get a lower-bound for (11) by characterising the difference
between the arguments of the floating point operations:

<6wewl,€xz—1ﬁ£71>’}//[+6/£ Al Al—T\ 2 A
= — (W) 2P (12)

I'Without loss of generality, we can assume v’¢ > 0; indeed, if /¢ < 0 it is sufficient to flip
the signs of both w’ and ~¢.

To pinpoint the possible sources of errors, we expand this difference by a
repeated application of the sum-and-subtract equation property:

€w VAVZ,EX w1 /é+ iz L) .
< £ -1 >'Y ﬁ _ << £ €—1>7€+B€) /2D _

W, X
¢)
€x
<€w£we’€x£_1§(2—l>,yll + ﬁ/Z <€w[’w£’€xz_1§(2—l>,y/£ B/é
- - — - +=)|+
€x €x €x

ol Wl—1\ 1 "
Ewt W', €50 1X v 15} al Af—T1\ A
+<< Eel) n 6£>—(<w"7xé 1>7e+55>/2D:

_ |:<6WZVAVZa €x£71&z71>7/z + BIZ (<EWZVAV63 €x2*1&£71>7w B/e>:| +

n [<<€wewg,6x55—1ﬁ€_l>’yw n ,8;) B (<VAV€,)Acg_l>€Z‘,‘,1z€x13—1’}/1g I ﬁ;)] 4
0 Hl—1 74 74
wh X €l Excl— “l Af—T1\ -
+ << >6ng xt-17 + @) o (<W€,X£ 1>,y€ _’_55) /2D _
X X
Lt e A A A AR CA A YN
a € € €
N |:<<€W£\x/e7€xl£1§(€_1>’)/z N BZ) B ((ﬁv[,fce_1>;wzelefy’é N /6’;5)] N
sl ol—1 74 74 7 /4
wh, X €t Exclm 0 1y Exprl Eqcl—
+ |:<<) >ewf x¢—17 +5€> o <<WE,XZ 1> wt xz 1y +5[):| +
4 74
N ~fp—1\ € /EX/—Ny' ﬁ “ Af—T\ A ~
+ <<WE,XZ 1> w - + g) _ (<Wl, L 1>,Yl_|_/6£) /2D
6)(6)C
(13)

3 Methodology and experimental setup

This project will consist of two parts: a theoretical and experimental analysis
of the discrepancy between a FQ neuron and its T(Q counterpart, and an ex-
perimental investigation of the impact of fake-quantisation on the training of a
realistic CNN.

3.1 FQ and TQ neurons

In this part of the project, we will analyse the error propagation involved in the
conversion of a single FQ neuron map (9) into a TQ neuron map (10). At this
stage, the complexity of the problem should by sufficiently low to allow us to
perform some numerical analysis and establish error bounds [8].

We will pay particular attention to the errors arising from the second term
of (13):

<6W1VAV€7 6x271§(€_1>’}/€ ﬁ/e <VAV€, &€_1>6w26x5*1,7/[ﬁli
+— - +— -

£ L
€% € €% €

X X

Indeed, we hypothesise that the dot product between fake-quantised arrays is
the operation where floating-point representations can create the largest dis-
crepancies between FQ and TQ neuron maps.

3.2 MobileNetV1 on CIFAR-10

In this part of the project, we will assess the impact of fake-quantisation on the
performance of a realistic CNN: a MobileNetV1 network topology [1] solving
the CIFAR-10 image classification task [9].

We define the discrepancy between the FQ and TQ versions of a network
as the collection of the distributions of absolute errors at each layer. We will
measure this discrepancy for several configurations; the space of configurations
is defined as the Cartesian product of three degrees of freedom:

e the target precision of weights and activations (in number of bits);

e the size of the weight filters (in terms of spatial dimensions and number
of input channels);

e the floating-point format used to represent FQ operands.

We will explore several floating-point formats, both defined by the IEEE754-
2008 standard [10] and the non-standard ”brain floating-point” 16-bit format
[11]:

e FP32, also known as full precision;

e FP64, also known as double precision;
e FP16, also known as half precision;

e bfloatlé6.

We might use existing open-source software to emulate different floating-point
formats [12].

References

[1] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: efficient convolutional neural
networks for mobile vision applications,” 2017.

[2] S. Han, H. Mao, and W. J. Dally, “Deep compression: compressing deep
neural networks with pruning, trained quantization and huffman coding,”
in Proceedings of the Fourth International Conference on Learning Repre-
sentations (ICLR 2016), International Conference on Learning Represen-
tations (ICLR), 2016.

[3]

[10]

[11]

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quan-
tized neural networks: training neural networks with low precision weights
and activations,” Journal of Machine Learning Research, vol. 18, pp. 1-30,
2018.

M. Rusci, A. Capotondi, and L. Benini, “Memory-driven mixed low preci-
sion quantization for enabling deep network inference on microcontrollers,”
in Proceedings of the Third Conference on Machine Learning and Systems
(MLSys 2020), 2020.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proceedings of the 26th Con-
ference on Neural Information Processing Systems (NIPS 2012), Neural
Information Processing Systems (NIPS), 2012.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proceedings of the Third International
Conference on Learning Representations (ICLR 2015), International Con-
ference on Learning Representations (ICLR), 2015.

S. Toffe and C. Szegedy, “Batch normalization: accelerating deep network
training by reducing internal covariate shift,” in Proceedings of the 32nd
International Conference on Machine Learning (ICML), MLResearchPress,
2015.

D. Goldberg, “What every computer scientist should know about floating-
point arithmetic,” ACM Computing Surveys, vol. 23, pp. 5-48, 1991.

A. Krizhevsky, V. Nair, and G. E. Hinton. https://www.cs.toronto.edu/
~kriz/cifar.html, 2014.

“IEEE Standard for Floating-Point Arithmetic,” standard, The Institute
of Electrical and Electronics Engineers, Inc., 3 Park Avenue, New York,
NY 10016-5997, USA, June 2008.

S. Wang and P. Kanwar. https://cloud.
google.com/blog/products/ai-machine-learning/
bfloat16-the-secret-to-high-performance-on-cloud-tpus, 2019.

S. Mach and G. Tagliavini. https://github.com/oprecomp/flexfloat,
2018.

