
Exploring NAS spaces with C-BRED

Matteo Spallanzani, IIS, D-ITET, ETH Zürich
Thorir Mar Ingolfsson, IIS, D-ITET, ETH Zürich

1 Introduction

Deep neural networks (DNNs) are amongst the most effective machine learning
systems available nowadays. Indeed, DNNs are critical components of auto-
mated decision making systems and scientific tools that were unthinkable just
a decade ago [1, 2, 3]. These breakthroughs have been due both to the techno-
logical context (fast, energy-efficient, programmable, parallel computing devices
such as graphics processing units (GPUs), as well as large annotated data sets)
and to the advancements in the design of network architectures. The evolution
of convolutional neural network (CNN) architectures is emblematic of the latter
[4, 5, 6, 7, 8, 9, 10, 11].

Assessing the trade-offs between a DNN’s accuracy and its computational
requirements requires considerable expertise, experimentation and, ultimately,
time. For this reason, the DNN research community has devoted considerable ef-
forts to neural architecture search (NAS) [12]. NAS is the deep-learning-specific
variant of the standard statistical problem of model selection: it encompasses
techniques to describe entire families of network architectures in some para-
metric form, and then select those members which are most likely to deliver
the desired accuracy. The families of network architectures are known as NAS
spaces (or simply search spaces), whereas the selection techniques are known
as NAS algorithms (or simply search algorithms).

NAS spaces are usually designed to include a large number of networks to
increase the likelihood of including members with good performance. However,
this over-parametrisation implies that search algorithms will require consider-
able amounts of time to identify suitable candidates. For this reason, techniques
that are capable of reducing the size of over-parametrised NAS search spaces
are important to accelerate the convergence of NAS search algorithms. To in-
crease the likelihood that the search algorithms will yield networks with good
performance, these sub-space selection algorithms should return collections of
architectures whose quality is in some sense superior to the quality of the archi-
tectures enclosed in the entire space.

In a previous project, we designed and implemented clustering-based reduc-
tion (C-BRED), a new algorithm to select high-quality sub-spaces from given
NAS spaces. In this project, we will refactor the implementation of C-BRED
to extend its scope and explore its capabilities more thoroughly.

1



2 Clustering-based reduction of NAS spaces

2.1 An overview of NAS spaces and algorithms

The parametrisation of NAS spaces is usually defined in terms of macroscopic
structural characteristics such as the number of layers and their mutual con-
nectivity. Some DNN search spaces are parametrised in terms of cells, i.e.,
sub-networks including a few layers which are replicated and stacked on top of
each other to compose the candidate networks. The NAS-Bench-101 (NB101)
and NAS-Bench-201 (NB201) data sets are NAS spaces designed for the bench-
marking of NAS algorithms, and are examples of such cell-based spaces [13, 14].

Researchers in the NAS community have proposed search algorithms based
on different paradigms: from evolutionary algorithms [15], through reinforce-
ment learning [16] and differentiable algorithms [17, 18], to randomised algo-
rithms [19] and even graph-based Bayesian methods [20, 21]. Several search
algorithms have also been proposed to satisfy constraints imposed by the target
computing platform [22, 23].

2.2 Computational graphs

Computational graphs provide a convenient way to describe computer programs
since operands and operations can be represented as nodes, whereas read and
write operations can be represented as arcs. Modern deep learning frame-
works such as TensorFlow [24] and PyTorch [25] are built around the dataflow
programming model, which is based on the computational graph abstraction
[26, 27].

2.3 Clustering

Clustering can be considered a sub-field of unsupervised machine learning. It
encompasses a collection of techniques to partition a given family of data points
into disjoint subsets (the clusters) based on some similarity measure: points
which are close under the chosen metric should be mapped to the same subset
[28, 29, 30].

In some cases, it is hard to give explicit definitions of distances. Graphs
are an example of objects for which defining explicit distances is non-trivial. In
these cases, we can use kernel functions to measure object similarity [31, 32].

2.4 DNN statistics

From the user’s perspective, the most important property that a DNN must sat-
isfy is delivering the required functionality. This consideration makes statistical
accuracy, or simply accuracy, the most important metric to evaluate a DNN.

Evaluating the accuracy of all the networks in a given NAS space can trans-
late into unfeasible computational and time requirements. To see this, we make
two considerations. First, it is reasonable to suppose that a DNN will de-
liver higher accuracy after having been trained; therefore, we are interested

2



in measuring accuracy after training has taken place. Second, it is unlikely
that training the same architecture twice will yield identical results due to the
stochasticity inherent to the training process (both the initial value of the pa-
rameter and the direction of the update steps are non-deterministic); therefore,
we should perform multiple training experiments for a single DNN architecture
in order to thoroughly assess its quality.

Note that the cost of measuring accuracy is mostly related to the cost of
obtaining a single measurement. Training-free (TF) statistics are metrics to
evaluate DNNs that can be measured running a single or even no iterations of
the stochastic gradient descent (SGD) algorithm. Existing research has identi-
fied a few candidate TF statistics that have a desirable property: given a target
network, their distributions seem to correlate with the network’s accuracy dis-
tribution [33, 34, 35, 36, 37]. The hope is that these TF statistics can be used
as cheap-to-compute proxies for accuracy.

2.5 Evaluating network spaces

Using statistical jargon, NAS spaces can be considered populations whose in-
dividuals are network architectures. Populations are typically evaluated by
analysing how the values of selected observable variables distribute over its in-
dividuals. This probabilistic approach to evaluate populations of networks has
recently been applied to the analysis of network spaces [38, 39]. Assuming that
good TF statistics correlate with accuracy, we can analyse the distribution of
TF statistics inside a NAS space (or a subset of its) to estimate the quality of
its enclosed architectures.

2.6 Putting the pieces together: C-BRED

C-BRED combines similarity measures between computational graphs, cluster-
ing algorithms, and TF statistics to achieve the desired reduction of NAS spaces.

First, given a similarity measure and the computational graphs of the tar-
get NAS space, it computes a distance (i.e., dissimilarity) or similarity matrix
between all the architecture pairs. Then, it provides the similarity measure to
the clustering algorithm; to make the clustering process more robust, C-BRED
uses cross-validation and other techniques to identify the partition which is most
stable with respect to perturbations. Finally, clusters are compared by looking
at the TF statistic distributions of their enclosed architectures, and the most
promising sub-space is returned.

3 Project plan

This project will consist of two parts: the development of a modular software
tool to explore the application of C-BRED to arbitrary NAS spaces; and an
experimental investigation of the impact of such parameters on the performance
of C-BRED, as measured on the NB101 and NB201 spaces.

3



3.1 Software development

The first part of the project will deal with the design, implementation, and
testing of the C-BRED software tool.

First, during the design stage, we will analyse the C-BRED flow to iden-
tify its elementary components and define a composable system of primitives;
this system of primitives should be independent of the specific graph distances,
clustering algorithms and cluster selection procedures used. Then, during the
implementation and testing steps, you will turn the software project into prop-
erly tested code; we will have regular code reviews to ensure that the delivered
code can be easily reused by other researchers. In addition to C-BRED’s func-
tional requirements, the new codebase should support the following visualisation
functionalities:

• scatterplots supporting both numerical and categorical colour codes; in
conjunction with dimensionality reduction techniques, this feature will al-
low users to visually inspect NAS spaces by colouring each point (i.e., each
network) with the corresponding value of a chosen TF statistic (numerical)
or the identifier of its enclosing cluster (categorical);

• histograms and estimated densities of one-dimensional distributions; this
feature will provide users with graphical devices to evaluate the clusters
created by C-BRED.

3.2 Experimental evaluation

As a system-level test, during the second part of the project, we will apply the
new C-BRED software tool to the NB101 and NB201 NAS spaces.

In particular, we are interested in evaluating both the absolute quality of the
selected sub-spaces and their relative quality with respect to sibling clusters, un-
der different hyper-parameter configurations. The quality of a cluster can be
quantified by the distribution of the accuracy statistic over its enclosed net-
works: example metrics include the mean of this distribution, its variance, and
the distribution of the minimum accuracy achieved by N -shot random search
over the cluster. The space of hyper-parameter configurations is defined by the
Cartesian product of the following degrees of freedom:

• the graph distance;

• the clustering procedure;

• the cluster selection procedure.

References

[1] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, T. Guez,
A. Hubert, L. Baker, A. Lai, M. Bolton, Y. Chen, T. Lillicrap, F. Hui,
L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis, “Mastering

4



the game of Go without human knowledge,” Nature, vol. 550, pp. 354–359,
2017.

[2] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan,
M. Kroiss, I. Danihelka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou, M. Jader-
berg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard, D. Budden,
Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Wang, T. Pfaff, Y. Wu,
R. Ring, D. Yogatama, D. Wünsch, K. McKinney, O. Smith, T. Schaul,
T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps, and D. Silver, “Grand-
master level in StarCraft II using multi-agent reinforcement learning,” Na-
ture, vol. 575, pp. 350–354, 2019.

[3] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Ž́ıdek, A. Potapenko, A. Bridgland,
C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes,
S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy,
M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein,
S. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hass-
abis, “Higly accurate protein structure prediction with AlphaFold,” Nature,
vol. 596, pp. 583–589, 2021.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proceedings of the 26th In-
ternational Conference on Neural Information Processing Systems (NIPS
2012), Neural Information Processing Systems, 2012.

[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proceedings of the 3rd International Con-
ference on Learning Representations (ICLR 2015), ICLR, 2015.

[6] M. Lin, Q. Chen, and S. Yan, “Network in network,” in Proceedings of the
2nd International Conference on Learning Representations (ICLR 2014),
ICLR, 2014.

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Proceedings of the 2015 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR 2015), IEEE, 2015.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the 2016 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR 2016), IEEE, 2016.

[9] F. Chollet, “Xception: deep learning with depthwise separable convolu-
tions,” in Proceedings of the 2017 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR 2017), IEEE, 2017.

5



[10] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bileNetV2: inverted residuals and linear bottlenecks,” in Proceedings of the
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR 2018), IEEE, 2018.

[11] M. Tan and Q. V. Le, “EfficientNet: rethinking model scaling for convolu-
tional neural networks,” in Proceedings of the 36th International Conference
on Machine Learning (ICML 2019), MLResearchPress, 2019.

[12] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: a
survey,” Journal of Machine Learning Research, vol. 20, pp. 1–21, 2019.

[13] C. Ying, A. Klein, E. Real, E. Christiansen, K. Murphy, and F. Hutter,
“NAS-Bench-101: towards reproducible neural architecture search,” in Pro-
ceedings of the 36th International Conference on Machine Learning (ICML
2019), ML Research Press, 2019.

[14] X. Dong and Y. Yang, “NAS-Bench-201: extending the scope of repro-
ducible neural architecture search,” in Proceedings of the 8th International
Conference on Learning Representations (ICLR 2020), ICLR, 2020.

[15] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 2, pp. 99–127,
2002.

[16] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in Proceedings of the 5th International Conference on Learning
Representations (ICLR 2017), ICLR, 2017.

[17] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Va-
jda, Y. Jia, and K. Keutzer, “FBNet: hardware-aware efficient ConvNet
design via differentiable neural architecture search,” in Proceedings of the
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR 2018), IEEE, 2018.

[18] L. Hanxiao, K. Simonyan, and Y. Yang, “DARTS: differentiable architec-
ture search,” in Proceedings of the 7th International Conference on Learn-
ing Representations (ICLR 2019), ICLR, 2019.

[19] S. Xie, A. Kirillov, R. Girshick, and K. He, “Exploring randomly wired neu-
ral networks for image recognition,” in Proceedings of the 2019 IEEE/CVF
International Conference on Computer Vision (ICCV 2019), IEEE, 2019.

[20] K. Kandasamy, W. Neiswanger, J. Schneider, B. Póczos, and E. P. Xing,
“Neural architecture search with Bayesian optimization and optimal trans-
port,” in Proceedings of the 32nd International Conference on Neural Infor-
mation Processing Systems (NeurIPS 2018), Neural Information Processing
Systems, 2018.

6



[21] B. Ru, X. Wan, X. Dong, and M. Osborne, “Interpretable neural architec-
ture search via Bayesian optimisation with Weisfeiler-Lehman kernels,” in
Proceedings of the 9th International Conference on Learning Representa-
tions (ICLR 2021), ICLR, 2021.

[22] J. Lin, W.-M. Chen, Y. Lin, J. Cohn, C. Gan, and S. Han, “MCUNet:
tiny deep learning on IoT devices,” in Proceedings of the 34th International
Conference on Neural Information Processing Systems (NeurIPS 2020),
Neural Information Processing Systems, 2020.

[23] E. Liberis, L. Dudziak, and N. D. Lane, “µNAS: constrained neural archi-
tecture search for microcontrollers,” in Proceedings of the 1st Workshop on
Machine Learning and Systems (EuroMLSys ’21), ACM, 2021.

[24] M. Abadi, P. Barham, J. Chen, J. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, G. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: a system for large-scale
machine learning,” in Proceedings of the 12th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI ’16), USENIX, 2016.

[25] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: an imperative-style, high-
performance deep learning library,” in Proceedings of the 33rd Conference
on Neural Information Processing Systems (NeurIPS 2019), Neural Infor-
mation Processing Systems, 2019.

[26] J. B. Dennis, “First version of a data flow procedure language,” in Pro-
gramming Symposium, Springer, 1974.

[27] W. M. Johnston, J. R. Paul Hanna, and R. J. Millar, “Advances in dataflow
programming languages,” ACM Computing Surveys, vol. 36, pp. 1–34,
2004.

[28] J. B. MacQueen, “Some methods for classification and analysis of multivari-
ate observations,” in Proceedings of the 5th Berkeley Symposium on Math-
ematical Statistics and Probability, University of California Press, 1967.

[29] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: analysis
and an algorithm,” in Proceedings of the 14th International Conference on
Neural Information Processing Systems (NIPS ’01), Neural Information
Processing Systems, 2001.

[30] U. von Luxburg, “A tutorial on spectral clustering,” Statistics and Com-
puting, vol. 17, pp. 395–416, 2007.

[31] T. Hofmann, S. B., and A. J. Smola, “Kernel methods in machine learning,”
The Annals of Statistics, vol. 36, pp. 1171–1220, 2008.

7



[32] N. M. Kriege, F. D. Johansson, and C. Morris, “A survey on graph kernels,”
Applied Network Science, vol. 5, pp. 1–42, 2020.

[33] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: convergence
and generalization in neural networks,” in Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing Systems (NIPS 2018),
Neural Information Processing Systems, 2018.

[34] C. Liu, P. Dollár, K. He, R. Girshick, A. Yuille, and S. Xie, “Are labels nec-
essary for neural architecture search?,” in Proceedings of the 16th European
Conference on Computer Vision (ECCV 2020), Springer, 2020.

[35] W. Chen, X. Gong, and Z. Wang, “Neural architecture search on ImageNet
in four GPU hours: a theoretically inspired perspective,” in Proceedings
of the 9th International Conference on Learning Representations (ICLR
2021), ICLR, 2021.

[36] J. Mellor, J. Turner, A. Storkey, and E. J. Crowley, “Neural architecture
search without training,” in Proceedings of the 38th International Confer-
ence on Machine Learning (ICML 2021), MLResearchPress, 2021.

[37] E. Amid, R. Anil, W. Kot lowski, and M. K. Warmuth, “Learning from
randomly initialized neural network features,” 2022.

[38] I. Radosavovic, J. Johnson, S. Xie, W.-Y. Lo, and P. Dollár, “On network
design spaces for visual recognition,” in Proceedings of the 2019 IEEE/CVF
International Conference on Computer Vision (ICCV 2019), IEEE, 2019.

[39] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár, “Design-
ing network design spaces,” in Proceedings of the 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR 2020), IEEE,
2020.

8


