
Bridging QuantLab with LPDNN

Matteo Spallanzani, IIS, D-ITET, ETH Zürich
Cristian Cioflan, IIS, D-ITET, ETH Zürich

Miguel de Prado, Bonseyes Community Association

1 Introduction

Deep neural networks (DNNs) are the backbone of most contemporary artificial
intelligence systems [1, 2, 3]. DNNs have considerable computational demands,
requiring millions or even billions of parameters and a proportional amount of
operations to process a single data point and deliver their accurate functionali-
ties.

These properties make it challenging to deploy DNNs to resource-constrained
devices such as embedded and edge computing platforms, and consequently to
enable the pervasive application of artificial intelligence (AI). Several strategies
have been proposed to reduce the computational requirements of DNNs, ranging
from topological optimisations [4, 5, 6] to lower-level solutions such as tensor
decomposition, parameter pruning, and operand quantisation [7, 8, 9].

Amongst these strategies, quantisation [9, 10] encompasses a series of tech-
niques to replace the floating-point (FP) weights and features of DNNs with
reduced-precision integerised counterparts. It is easy to see that quantising the
operands of a DNN can significantly reduce its memory and storage footprints.
For instance, moving from full-precision (i.e., 32-bit FP) down to single-byte
integers can reduce these metrics by 4×. Reducing the memory and storage
required by network operands also improves the arithmetic intensity of neural
network inference, since it increases the amount of computational work that can
be performed for a given amount of memory traffic. These quantised neural net-
works (QNNs) are particularly appealing when targetting embedded computing
systems, since they are usually optimised around single instruction, multiple
data (SIMD) integer arithmetic, and have limited or no support for FP arith-
metic.

The machine learning engineering community has invested significant efforts
to facilitate the deployment of DNNs to embedded and edge devices, as testified
by a rich panorama of dedicated software tools [11, 12, 13, 14, 15, 16]. In this
project, you will extend Low-Power Deep Neural Network (LPDNN) [11], a soft-
ware framework capable of deploying DNNs to a diversified range of embedded,
possibly heterogeneous computing platforms, to support new quantisation algo-
rithms. You will achieve this functionality by connecting LPDNN to QuantLab
[16], a software tool to train QNNs and prepare them for quantisation.

1



2 Background

2.1 Fake-quantised (FQ) arrays, true-quantised (TQ) ar-
rays, and fake-to-true (F2T) conversion

To better understand the benefits of quantisation and how it is achieved in
practice, consider the most important primitive of DNNs: the dot product. Let
x and w be two arrays of FP numbers with N ≥ 1 components each. Their dot
product is

〈x,w〉 =

N∑
n=1

xnwn .

Evaluating this expression requires performing N FP products and N FP accu-
mulations (if starting from an accumulator set to zero).

At training time, QNNs compute dot products between constrained arrays
x̃, w̃ that can be written as

x̃ = εxx̂ , (1)

w̃ = εwŵ , (2)

where εx, εw > 0 are FP scale factors, or simply scales, and x̂, ŵ are arrays
whose components are integer and take value in some integer range

R(z,B) := {z + 0, z + 1, . . . , z + 2B − 1} ;

here, B ≥ 1 is an integer bit-width and z ∈ Z is an integer zero-point. The
arrays x̂, ŵ are called TQ arrays, since their components are truly integerised.
The arrays x̃, w̃ are called FQ arrays, since their components are multiples of
integers, but are represented using FP numbers. After training, one can map dot
products between FQ arrays into dot products between TQ arrays by applying
elementary arithmetic properties:

〈x̃, w̃〉 = 〈εxx̂, εwŵ〉

=

N∑
n=1

εwx̂nεwŵn

=

N∑
n=1

εxεwx̂nŵn

= εxεw

(
N∑

n=1

x̂nŵn

)
= εxεw〈x̂, ŵ〉 .

The last dot product only requires N integer multiplication and N integer ac-
cumulations (if starting from an accumulator set to zero), plus a single FP

2



multiplication. This rewriting is called F2T conversion 1.
Using the FQ format at training time is beneficial in that it allows to quickly

train QNNs on mainframes and workstations where training kernels optimised
for FP execution are available. It then suffices to perform F2T conversion before
deploying the desired QNN to the target embedded platform [10].

2.2 Post-training quantisation (PTQ) and quantisation-
aware training (QAT) algorithms

Creating QNNs is a non-trivial task. Indeed, discretising the parameters and
features of a DNN layer most often creates discrepancies between the reference
FP layer and its corresponding FQ counterpart. Given the compositional nature
of DNNs, these discrepancies are propagated from a layer to the next, and the
discrepancies intrinsic to the donwstream layers also add up. This propagation
often results in errors in the outputs, destroying the functionality of the network
that is being quantised. The algorithms that quantise neural networks must
take into account these effects and can be partitioned into two families: PTQ
algorithms, and QAT algorithms.

PTQ algorithms take as inputs FP DNNs that have been trained to con-
vergence, and return FQ networks. As a first step, they introduce quantisers
(i.e., operations that turn FP arrays into FQ arrays) into the target DNN; this
process is known as float-to-fake (F2F) conversion. Then, the discrepancies be-
tween the FP and FQ network are analysed, possibly pushing some validation
data points through both networks to get and compare statistics. Finally, the
quantisers are adapted to minimise the discrepancies and ensure that the func-
tionality of the target network is preserved. Note that no gradient descent step
is performed [17].

On the other hand, QAT algorithms perform at least some gradient descent
steps after F2F conversion [9, 18]. QAT algorithms can be applied either to pre-
trained DNNs, in which case we might talk of quantisation-aware fine-tuning
(QAFT), or to untrained networks.

PTQ algorithms usually work well for QNNs using 8-bit operands. QAT
algorithms starting from pre-trained DNNs usually work well for QNNs using
sub-byte operands and solving simple tasks. Targetting aggressively quantised
operands (e.g., binary or ternary) usually requires training QNNs from scratch
using QAT algorithms.

2.3 Open Neural Network eXchange (ONNX)

ONNX is a standard to describe DNNs [19]. Each version of ONNX defines
and supports a collection of operations (e.g., convolutions, additions, activation
functions) that are typically composed to create DNNs [20].

1Real F2T conversions are a bit more involved when batch-normalisation and activation
functions are considered, but their goal (mapping operations between FQ arrays to operations
between TQ arrays) and the tools used to achieve the goal (elementary arithmetic properties)
remain the same

3



Popular deep learning frameworks (e.g., TensorFlow, PyTorch) include ex-
port utilities to map their idiosyncratic network representations to the corre-
sponding ONNX ones. For instance, it is possible to train two DNNs using
different deep learning frameworks, and still express them in a standardised
format, making code generation and compilation framework-agnostic. By pro-
viding a unified description format for DNNs, ONNX decouples the creation of
a network from its deployment.

2.4 QuantLab & QuantLib

QuantLab is a PyTorch-based software tool to train QNNs using QAT algo-
rithms, tune the algorithms’ hyper-parameters and prepare the networks for
deployment [16]. QuantLab consists of two parts.

QuantLib QuantLib is a quantisation library [21]. It implements the building
blocks to perform F2F conversion, train QNNs using several QAT algorithms,
and perform F2T conversion.

QuantLab QuantLab is an experiment manager [16]. It implements a training
environment to facilitate the structured exploration of QNN performance when
applied to a variety of data sets and network architectures.

2.5 LPDNN

LPDNN is a framework to generate portable and efficient DNN-based machine
learning systems. The goal of LPDNN is to provide a zoo of DNNs to solve
a diversified range of tasks (e.g., object detection, image classification, speech
recognition) and that can be optimised for and deployed embedded platforms
featuring heterogeneous processing elements (central processing units (CPUs),
general-purpose graphics processing units (GPGPUs), field-programmable gate
arrays (FPGAs), digital signal processors (DSPs), application-specific integrated
circuits (ASICs)). LPDNN models each solution as a so-called AI application,
and achieves efficiency by delegating program optimisations and code generation
to its modular LPDNN iNference Engine (LNE).

AI applications AI applications are the abstraction used by LPDNN to rep-
resent deployable deep learning solutions. A basic AI application consists of
two modules: a pre-processing module preparing the raw inputs for the core
processing (e.g., by normalising them) and a DNN module performing the core
neural network processing. A basic AI application can be extended by including
a post-processing module, which allows the creation of data structures such as
bounding boxes or facial landmarks.

4



LNE At the heart of LPDNN lies LNE. LNE is a code generator aiming at
accelerating the execution of neural networks on heterogeneous embedded plat-
forms. LNE combines a plugin-based architecture with a dependency-free in-
ference core that supports inference of DNNs on a wide range of embedded
devices. LNE’s core includes a set of CPU C++ functions that can be comple-
mented by platform-specific acceleration libraries (e.g., ARM Compute Library
(ARM-CL), CUDA) to generate code for AI applications that is optimised for
the target platform.

LNE supports a wide range of neural network models as it provides direct
compatibility with ONNX. First, the ONNX representation of a given network
is converted to an LPDNN-specific computational graph format. Then, several
steps such as PTQ and optimisations based on graph analysis (e.g., operator
fusion, optimised memory allocation) are performed. Finally, each node of the
computation graph is linked to the corresponding backend routine that will
be called during the execution of the neural network. Runtime functions or-
chestrate the information flow between the backends executing the compiled
network.

3 Project plan

The goal of this project is to extend LPDNN’s network quantisation capabilities
by providing it with a front-end capable of QAT training; in our case, QuantLab.
The project will consist of two parts: in the first part, you will train a facial
landmark localisation DNN in QuantLab using a QAT algorithm; in the second
part, you will develop the required LPDNN software connectors to parse the
trained model and deploy it to one of LPDNN’s supported backends.

3.1 Train a facial landmark localisation network using a
QAT algorithm

As a benchmark AI application, we will target facial landmark localisation [22,
23]. In particular, we will quantise the 3-dimensional dense face alignment
(3DDFA) network architecture [24, 25] to eight bits using the parametrised
clipping activation (PACT) QAT algorithm [18].

During this part of the project, you will first familiarise yourself with the
problem of facial landmark localisation and with the 3DDFA network architec-
ture; you will also familiarise yourself with QuantLab and QuantLib. Then, you
will train 3DDFA using PACT, identifying suitable configurations of the train-
ing hyper-parameters that can preserve the network’s functionality. Finally,
you will export an ONNX representation of the trained network; remember:
QuantLab-exported ONNX files include annotations that are not supported by
the ONNX standard.

5



3.2 Develop software connectors to bridge QuantLab with
LPDNN

As a benchmark platform, we will target an off-the-shelf Raspberry Pi 4 (RPI4)
which includes a Cortex-A72 quad-core CPU.

During this part of the project, you will first familiarise yourself with LPDNN;
in particular, you will familiarise yourself with its ONNX parser, its modular
system of backends, and more specifically with its ARM-CL backend. Then,
you will extend LPDNN’s ONNX parser to accept QuantLab-exported ONNX
files. Finally, you will extend LPDNN’s ARM-CL backend to accept the newly-
accepted ONNX parsings.

3.3 Bonus task: compare PTQ and QAT algorithms

If time remains, we will compare the functional performance of LPDNN net-
works created using its integrated PTQ algorithm and the newly-supported
QAT algorithm.

References

[1] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, T. Guez,
A. Hubert, L. Baker, A. Lai, M. Bolton, Y. Chen, T. Lillicrap, F. Hui,
L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis, “Mastering
the game of Go without human knowledge,” Nature, vol. 550, pp. 354–359,
2017.

[2] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan,
M. Kroiss, I. Danihelka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou, M. Jader-
berg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard, D. Budden,
Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Wang, T. Pfaff, Y. Wu,
R. Ring, D. Yogatama, D. Wünsch, K. McKinney, O. Smith, T. Schaul,
T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps, and D. Silver, “Grand-
master level in StarCraft II using multi-agent reinforcement learning,” Na-
ture, vol. 575, pp. 350–354, 2019.

[3] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Ž́ıdek, A. Potapenko, A. Bridgland,
C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes,
S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy,
M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein,
S. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hass-
abis, “Higly accurate protein structure prediction with AlphaFold,” Nature,
vol. 596, pp. 583–589, 2021.

6



[4] F. Chollet, “Xception: deep learning with depthwise separable convolu-
tions,” in Proceedings of the 2017 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR 2017), IEEE, 2017.

[5] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bileNetV2: inverted residuals and linear bottlenecks,” in Proceedings of the
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR 2018), IEEE, 2018.

[6] M. Tan and Q. V. Le, “EfficientNet: rethinking model scaling for convolu-
tional neural networks,” in Proceedings of the 36th International Conference
on Machine Learning (ICML 2019), MLResearchPress, 2019.

[7] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Review, pp. 455–500, 2009.

[8] S. Han, H. Mao, and W. J. Dally, “Deep compression: compressing deep
neural networks with pruning, trained quantization and huffman coding,”
in Proceedings of the 2016 International Conference on Learning Repre-
sentations (ICLR 2016), International Conference on Learning Represen-
tations (ICLR), 2016.

[9] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quan-
tized neural networks: training neural networks with low precision weights
and activations,” Journal of Machine Learning Research, vol. 18, pp. 1–30,
2018.

[10] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and
D. Kalenichenko, “Quantization and training of neural networks for efficient
integer-arithmetic-only inference,” in Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR 2018),
IEEE, 2018.

[11] M. de Prado, M. Denna, L. Benini, and N. Pazos, “QUENN: quantization
engine for low-power neural networks,” in Proceedings of the 15th ACM
International Conference on Computing Frontiers, ACM, 2018.

[12] R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, S. Regev, R. Rhodes, T. Wang, and P. Warden,
“TensorFlow Lite Micro: embedded machine learning on TinyML systems,”
2020.

[13] https://github.com/quic/aimet, December 2020.

[14] “Vitis AI User Guide (v1.4),” July 2021.

[15] https://www.arm.com/technologies/compute-library, November
2021.

[16] https://github.com/pulp-platform/quantlab.

7



[17] R. Banner, Y. Nahshan, and D. Soudry, “Post-training 4-bit quantiza-
tion of convolutional networks for rapid deployment,” in Proceedings of the
33rd International Conference on Neural Information Processing Systems
(NeurIPS 2019), Neural Information Processing Systems, 2019.

[18] J. Choi, S. Venkataramani, V. Srinivasan, K. Gopalakrishnan, Z. Wang,
and P. Chuang, “Accurate and efficient 2-bit quantized neural networks,”
in Proceedings of the 2nd Conference on Systems and Machine Learning
(SysML 2019), Conference on Systems and Machine Learning, 2019.

[19] https://onnx.ai/.

[20] https://github.com/onnx/onnx/blob/main/docs/Operators.md.

[21] https://github.com/pulp-platform/quantlib.

[22] M. Köstinger, P. Wohlhart, P. M. Roth, and H. Bischof, “Annotated facial
landmarks in the wild: a large-scale, real-world database for facial landmark
localization,” in Proceedings of the 2011 IEEE International Conference on
Computer Vision Workshops (ICCV Workshops), IEEE, 2011.

[23] C. Sagonas, E. Antonakos, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic,
“300 Faces In-The-Wild challenge: database and results,” Image and Vision
Computing, vol. 47, pp. 3–18, 2016.

[24] X. Zhu, Z. Lei, X. Liu, H. Shi, and S. Z. Li, “Face alignment across large
poses: a 3D solution,” in Proceedings of the 2016 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR 2016), IEEE, 2016.

[25] J. Guo, X. Zhu, Y. Yang, F. Yang, Z. Lei, and S. Z. Li, “Towards fast,
accurate and stable 3D dense face alignment,” in Proceedings of the 16th
European Conference on Computer Vision (ECCV 2020), Springer, 2020.

8


