Personal tools

Difference between revisions of "Deep Convolutional Autoencoder for iEEG Signals"

From iis-projects

Jump to: navigation, search
Line 1: Line 1:
[[Category:Digital]][[Category:In progress]][[Category:Available]] [[Category:Semester Thesis]] [[Category:Master Thesis]] [[Category:2019]][[Category:Hot]][[Category:Human Intranet]]
[[Category:Digital]][[Category:Available]] [[Category:Semester Thesis]] [[Category:Master Thesis]] [[Category:2019]][[Category:Hot]][[Category:Human Intranet]]
[[File:Non-EEG Seizure.jpg|thumb|300px]][[File:Deconv.png|thumb|300px]]
[[File:Non-EEG Seizure.jpg|thumb|300px]][[File:Deconv.png|thumb|300px]]

Revision as of 16:43, 20 September 2019

Non-EEG Seizure.jpg


Seizure detection systems hold promise for improving the quality of life for patients with epilepsy that afflicts nearly 1% of the world's population. High resolution intracranial Electroencephalography (iEEG) enables the detection and location of such seizures. When aiming a low power implanted system the large amount of data has to be efficiently reduced. iEEG signals are sparse and have been successfully compressed using well established encoders such as Compressive Sensing (CS), Discrete Wavelet Transform (DWT), or Non-Negative Matrix Factorization (NNMF). Due to its recent success, however, convolutional neural nets (CNNs) are getting more attention and showed to be a viable option to compress EEG signals [1].

In this thesis, the students will develop a deep convolutional autoencoder to compress iEEG signals.

Status: Available

Looking for 2 students for a semester project or 1 student for a master thesis.
Supervision: Michael Hersche, Abbas Rahimi


  • Machine Learning
  • Linear Algebra
  • Python Programming


20% Theory
80% Programming


Luca Benini

↑ top


  • Tingxi Wen et. al., Deep Convolution Neural Network and Autoencoders-Base Unsupervised Feature Learning of EEG Signals [1]

Practical Details

↑ top