Personal tools

Difference between revisions of "Enabling Standalone Operation"

From iis-projects

Jump to: navigation, search
m
Line 3: Line 3:
 
A key feature of our biomedical acquisition and processing platform is standalone operation: The system must be able to provide all required supply voltages and clock frequencies without external components in order to use it in wearable and even implantable in-vivo applications. Furthermore, the three involved uControllers (PULP, pulpino and a commercial radio SoC) must load their program code (that must also be up-gradable) from non-volatile storage at startup once all supplies and clocks are ready. The commercial radio SoC has integrated flash memory for this purpose; our two own ASICs share the discrete multi-Gigabit NAND flash that is also used for data storage.
 
A key feature of our biomedical acquisition and processing platform is standalone operation: The system must be able to provide all required supply voltages and clock frequencies without external components in order to use it in wearable and even implantable in-vivo applications. Furthermore, the three involved uControllers (PULP, pulpino and a commercial radio SoC) must load their program code (that must also be up-gradable) from non-volatile storage at startup once all supplies and clocks are ready. The commercial radio SoC has integrated flash memory for this purpose; our two own ASICs share the discrete multi-Gigabit NAND flash that is also used for data storage.
  
We have all the key requirements for standalone operation in place (programmable voltage converters, oscillators and boot loaders); in this project you are going to put them all together and create the missing control software/firmware. The goal is to demonstrate startup and operation of the platform with only a Li-ion battery connected.  
+
We have all the key ingredients for standalone operation in place (programmable voltage converters, oscillators and boot loaders); in this project you are going to put them all together and create the missing control software/firmware. The goal is to demonstrate startup and operation of the platform with only a Li-ion battery connected.  
  
 
In this thesis you will learn:
 
In this thesis you will learn:

Revision as of 14:37, 23 May 2018

Platform overview with the three active ICs and flash memory.

A key feature of our biomedical acquisition and processing platform is standalone operation: The system must be able to provide all required supply voltages and clock frequencies without external components in order to use it in wearable and even implantable in-vivo applications. Furthermore, the three involved uControllers (PULP, pulpino and a commercial radio SoC) must load their program code (that must also be up-gradable) from non-volatile storage at startup once all supplies and clocks are ready. The commercial radio SoC has integrated flash memory for this purpose; our two own ASICs share the discrete multi-Gigabit NAND flash that is also used for data storage.

We have all the key ingredients for standalone operation in place (programmable voltage converters, oscillators and boot loaders); in this project you are going to put them all together and create the missing control software/firmware. The goal is to demonstrate startup and operation of the platform with only a Li-ion battery connected.

In this thesis you will learn:

  • Firmware management in multi-chip systems
  • Details and challenges of bootloaders/boot binaries
  • Startup and synchronization challenges in complex embedded systems


Status: Available

We are looking for 1-2 motivated Semester Thesis/Group Work students
Contact: Florian Glaser

Prerequisites

  • Some experience with embedded/low level software
  • Interest in embedded systems and uControllers


Character

  • 20% Concept
  • 40% Embedded software design
  • 40% Experiments/Measurements