Personal tools

Human Intranet

From iis-projects

Revision as of 15:29, 10 August 2020 by Abbas (talk | contribs) (Online Brain-Computer Interfaces)
Jump to: navigation, search

What is Human Intranet?


The world around us is getting a lot smarter quickly: virtually every single component of our daily living environment is being equipped with sensors, actuators, processing, and connection into a network that will soon count billions of nodes and trillions of sensors. These devices only interact with the human through the traditional input and output channels. Hence, they only indirectly communicate with our brain—through our five sense modalities—forming two separate computing systems: biological versus physical. It could be made a lot more effective if a direct high bandwidth link existed between the two systems, allowing them to truly collaborate with each other and to offer opportunities for enhanced functionality that would otherwise be hard to accomplish. The emergence of miniaturized sense, compute and actuate devices as well as interfaces that are form-fitted to the human body opens the door for a symbiotic convergence between biological function and physical computing.

Human Intranet is an open, scalable platform that seamlessly integrates an ever-increasing number of sensor, actuation, computation, storage, communication and energy nodes located on, in, or around the human body acting in symbiosis with the functions provided by the body itself. Human Intranet presents a system vision in which, for example, disease would be treated by chronically measuring biosignals deep in the body, or by providing targeted, therapeutic interventions that respond on demand and in situ. To gain a holistic view of a person’s health, these sensors and actuators must communicate and collaborate with each other. Most of such systems prototyped or envisioned today serve to address deficiencies in the human sensory or motor control systems due to birth defects, illnesses, or accidents (e.g., invasive brain-machine interfaces, cochlear implants, artificial retinas, etc.). While all these systems target defects, one can easily imagine that this could lead to many types of enhancement and/or enable direct interaction with the environment: to make us humans smarter!

Here, in our projects, we mainly focus on sensor, computation, communication, and emerging storage aspects to develop very efficient closed-loop sense-interpret-actuate systems, enabling distributed autonomous behavior. For example, to design the brain of our physical computing (i.e., the compute/interpret component), we rely on computing with ultra-wide words (e.g., 10,000 bits) that eases interfacing with various sensor modalities and actuators. This novel computing paradigm is called hyperdimensional (HD) computing that is inspired from the very size of the biological brain’s circuits: assuming 1 bit per synapse, the brain is made up of more than 24 billion of such ultra-wide words. You can watch some of our demos:

You can also find a collection of complemented projects with source codes/datasets here:

Prerequisites and Focus

If you are an B.S. or M.S. student at the ETHZ, typically there is no prerequisite. You can come and talk to us and we adapt the projects based on your skills. The scope and focus of projects are wide. You can choose to work on:

  • Efficient hardware architectures in emerging technologies (e.g., the IBM computational memory)
  • Exploring new Human Intranet/IoT applications (High-level Embedded Programming)
  • Algorithm design and optimizations (Python)
  • System-level design and testing
  • Sensory interfaces (analog and digital)
  • FPGA prototyping, ASIC, and accelerators (SystemVerilog/ VHDL)

Useful Reading

Available Projects

Here, we provide a short description of the related projects for you to see the scope of our work. The directions and details of the projects can be adapted based on your interests and skills. Please do not hesitate to come and talk to us for more details.

Brain-Computer Interfaces


Short Description

Noninvasive brain–computer interfaces (BCI) and neuroprostheses aim to provide a communication and control channel based on the recognition of the subject’s intentions from spatiotemporal neural activity typically recorded by EEG electrodes. What makes it particularly challenging, however, is its susceptibility to errors over time in the recognition of human intentions.

In this project, our goal is to develop efficient and fast learning algorithms that replace traditional signal processing and classification methods by directly operating with raw data from electrodes. Furthermore, we aim to efficiently deploy those algorithms on tighly resource limited devices (e.g., Microcontroller units) for near sensor classification.


Available Projects

Epilepsy Seizure Detection Device

Non-EEG Seizure.jpg NeuroPace.jpg

Short Description

Seizure detection systems hold promise for improving the quality of life for patients with epilepsy that afflicts nearly 1% of the world's population. In this project, our goal is to develop efficient techniques for EEG as well as non-EEG signals to detect an upcoming seizure in an ultra-low-power device. This covers a wide range of analog and digital techniques. The abilities of hyperdimensional computing for one-shot and online learning can come to rescue.


Available Projects

Completed Projects

These are projects that were recently completed:

Where to find us