Personal tools

Difference between revisions of "Quantum transport in 2D heterostructures"

From iis-projects

Jump to: navigation, search
Line 1: Line 1:
 
[[File:Monolayer phosphorene.jpg|228px|thumb|Perspective side view of a mono-atomic layer of black phosphorus.]]
 
[[File:Monolayer phosphorene.jpg|228px|thumb|Perspective side view of a mono-atomic layer of black phosphorus.]]
 +
[[File:Bilayer TFET.jpg|228px|thumb| Schematic view of hetero-bilayer TFET.]]
 
==Short Description==
 
==Short Description==
 
Mono-atomic layer, so-called two-dimensional (2D), materials with a tunnelable band gap, e.g. phosphorene, are becoming very promising for potentially device applications. Tunnel field-effect transistors (TFETs) are expected to give rise to a new generation of low-power consumption logic switches. To date, TFETs are being investigated and built from conventional semiconductors, less often from 2D materials. Your task is from first-principles to characterize/study 2D-material-based TFETs, e.g. hetero-bilayer TFETs. The 2D Materials can be defined starting the project according to the student interest.
 
Mono-atomic layer, so-called two-dimensional (2D), materials with a tunnelable band gap, e.g. phosphorene, are becoming very promising for potentially device applications. Tunnel field-effect transistors (TFETs) are expected to give rise to a new generation of low-power consumption logic switches. To date, TFETs are being investigated and built from conventional semiconductors, less often from 2D materials. Your task is from first-principles to characterize/study 2D-material-based TFETs, e.g. hetero-bilayer TFETs. The 2D Materials can be defined starting the project according to the student interest.

Revision as of 15:23, 7 July 2016

Perspective side view of a mono-atomic layer of black phosphorus.
Schematic view of hetero-bilayer TFET.

Short Description

Mono-atomic layer, so-called two-dimensional (2D), materials with a tunnelable band gap, e.g. phosphorene, are becoming very promising for potentially device applications. Tunnel field-effect transistors (TFETs) are expected to give rise to a new generation of low-power consumption logic switches. To date, TFETs are being investigated and built from conventional semiconductors, less often from 2D materials. Your task is from first-principles to characterize/study 2D-material-based TFETs, e.g. hetero-bilayer TFETs. The 2D Materials can be defined starting the project according to the student interest.

Status: Available

Looking for 1 Master student in Electrical Engineering, Physics, Computer Science or related fields
Contact: Hamilton Carrillo-Nunez

Prerequisites

Experience with Ab-initio tools (VASP, QUANTUMESPRESSO), but not required

Character

40% Theory
40% Simulations
20% Implementation

Professor

Mathieu Luisier
Andreas Schenk