Personal tools

Difference between revisions of "Development of an efficient algorithm for quantum transport codes"

From iis-projects

Jump to: navigation, search
(Created page with "320px|thumb ==Short Description== To overcome the saturation of the electron velocity in next generation metal-oxide-...")
 
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[File:Simulation of novel solar cell architectures.png|320px|thumb]]
 
 
==Short Description==
 
==Short Description==
To overcome the saturation of the electron velocity in next generation metal-oxide-semiconductor field-effect transistors (MOSFETs), Silicon, the material of reference in the transistor industry, could be replaced by III-V semiconductors. InGaAs, for example, offers better electron transport properties than Si, but the number of available carriers that can rapidly flow through a transistor structure is limited due to the very low density-of-states of III-V semiconductors. As a consequence, the source contact of III-V MOSFETs might not be able to provide enough electrons at the time, thus leading to a reduction of the drive current instead of an increase. This phenomena is known as source starvation effect. The goal of this project is to develop a rate-equation model capable of capturing the distribution of the electron population in the source contact of III-V MOSFETs and of determining whether or not source starvation plays a significant role.  
+
Non-equilibrium Green’s function (NEGF) formalism is one of the most advanced methods for studying quantum transport properties of nanostructures.  It  is especially  convenient  for  treating  inelastic  scattering  like  electron-phonon  and  phonon-phonon  interactions. However, the treatment  of inelastic  interactions  within  the  NEGF framework  is  usually  based  on  the  self-consistent  Born  approximation  (SCBA)  which  induces  a numerically demanding iterative scheme..
 +
 
 +
==The Big Picture==
 +
The goal of this project is to develop an efficient algorithm, the so-called recursive algorithm, for the Lowest Order Approximation (LOA) to replace the routinely adopted SCBA scheme. The tasks will include the development and implementation of such an algorithm, with the benchmarking to the conventional one. This algorithm will then be applied to analyze the properties of atomically thin 2D devices, seeking a promising candidate for next-generation nanoelectronics.
 +
 
  
 
===Status: Available ===
 
===Status: Available ===
: Looking for 1..2 Master student(s)
+
: Looking for 1 Master student
: Contact: [[:User:Mluisier | Mathieu Luisier]], Dr. Urs Aeberhard, Forschungszentrum Juelich, [mailto:u.aeberhard@fz-juelich.de e-mail]
+
: Interested candidates please contact: [mailto:youseung.lee@iis.ee.ethz.ch Dr.Youseung Lee]
 +
 
 +
[[Category:Nano-TCAD]]
 +
[[Category:Available]]
 +
[[Category:Master Thesis]]
 +
[[Category:Hot]]
 +
 
 +
 
 
===Prerequisites===
 
===Prerequisites===
: Interest in device physics
+
:Good knowledge in solid state physics and quantum mechanics
: Flair for computational modeling
+
:Knowledge of MATLAB/C++ programming
 +
 
 
<!--  
 
<!--  
 
===Status: Completed ===
 
===Status: Completed ===
Line 19: Line 30:
 
: Supervision: [[:User:Mluisier | Mathieu Luisier]]
 
: Supervision: [[:User:Mluisier | Mathieu Luisier]]
 
--->
 
--->
 +
 +
<!--
 
===Character===
 
===Character===
: 30% Theory
+
: 20% Theory
: 10% Implementation
+
: 40% ASIC Design
: 60% Simulations
+
: 40% EDA tools
 +
--->
  
 
===Professor===
 
===Professor===
: [http://www.nano-tcad.ethz.ch/en/general-information/people/professors/uid/6326.html Mathieu Luisier]
+
<!-- : [http://www.iis.ee.ethz.ch/people/person-detail.html?persid=194234 Luca Benini] --->
 
+
<!-- : [http://www.iis.ee.ethz.ch/people/person-detail.html?persid=78758 Qiuting Huang] --->
[[#top|↑ top]]
+
: [http://www.iis.ee.ethz.ch/people/person-detail.html?persid=80923 Mathieu Luisier]
==Detailed Task Description==
+
<!-- :[http://www.iis.ee.ethz.ch/people/person-detail.MjUwODc0.TGlzdC8xOTgzLDIxMjc1NTkyODc=.html Taekwang Jang] --->
 
+
<!-- : [http://www.iis.ee.ethz.ch/people/person-detail.html?persid=79172 Andreas Schenk] --->
===Goals===
 
===Practical Details===
 
* '''[[Project Plan]]'''
 
* '''[[Project Meetings]]'''
 
* '''[[Design Review]]'''
 
* '''[[Coding Guidelines]]'''
 
* '''[[Final Report]]'''
 
* '''[[Final Presentation]]'''
 
 
 
==Results==
 
 
 
==Links==
 
  
 
[[#top|↑ top]]
 
[[#top|↑ top]]
[[Category:Nano-TCAD]]
 
[[Category:Available]]
 
[[Category:Semester Thesis]]
 
 
<!--
 
 
COPY PASTE FROM THE LIST BELOW TO ADD TO CATEGORIES
 
 
GROUP
 
[[Category:Digital]]
 
[[Category:Analog]]
 
[[Category:Nano-TCAD]]
 
[[Category:Nano Electronics]]
 
 
STATUS
 
[[Category:Available]]
 
[[Category:In progress]]
 
[[Category:Completed]]
 
[[Category:Hot]]
 
 
TYPE OF WORK
 
[[Category:Semester Thesis]]
 
[[Category:Master Thesis]]
 
[[Category:PhD Thesis]]
 
[[Category:Research]]
 
 
NAMES OF EU/CTI/NT PROJECTS
 
[[Category:UltrasoundToGo]]
 
[[Category:IcySoC]]
 
[[Category:PSocrates]]
 
[[Category:UlpSoC]]
 
[[Category:Qcrypt]]
 
 
YEAR (IF FINISHED)
 
[[Category:2010]]
 
[[Category:2011]]
 
[[Category:2012]]
 
[[Category:2013]]
 
[[Category:2014]]
 
 
--->
 

Latest revision as of 16:10, 16 September 2021

Short Description

Non-equilibrium Green’s function (NEGF) formalism is one of the most advanced methods for studying quantum transport properties of nanostructures. It is especially convenient for treating inelastic scattering like electron-phonon and phonon-phonon interactions. However, the treatment of inelastic interactions within the NEGF framework is usually based on the self-consistent Born approximation (SCBA) which induces a numerically demanding iterative scheme..

The Big Picture

The goal of this project is to develop an efficient algorithm, the so-called recursive algorithm, for the Lowest Order Approximation (LOA) to replace the routinely adopted SCBA scheme. The tasks will include the development and implementation of such an algorithm, with the benchmarking to the conventional one. This algorithm will then be applied to analyze the properties of atomically thin 2D devices, seeking a promising candidate for next-generation nanoelectronics.


Status: Available

Looking for 1 Master student
Interested candidates please contact: Dr.Youseung Lee


Prerequisites

Good knowledge in solid state physics and quantum mechanics
Knowledge of MATLAB/C++ programming


Professor

Mathieu Luisier

↑ top