Personal tools

Difference between revisions of "Energy Efficient Autonomous UAVs"

From iis-projects

Jump to: navigation, search
Line 49: Line 49:
 
</DynamicPageList>
 
</DynamicPageList>
  
 +
<!--
 
==Projects In Progress==
 
==Projects In Progress==
 
<DynamicPageList>
 
<DynamicPageList>
Line 56: Line 57:
 
suppresserrors=true
 
suppresserrors=true
 
</DynamicPageList>
 
</DynamicPageList>
 +
-->
  
 
==Completed Projects==
 
==Completed Projects==

Revision as of 19:22, 18 February 2018

A-B) The PULP-Shield PCB developed at IIS by our student Hanna Müller. C) Our prototype based on the Crazyflie 2.0 nano-UAV coupled with the PULP-Shield.

Topic

Nano-size Quadrotor

Nano-size Blimp

One of our favorite nano-size platform is the IIS/TIK Nano-Blimp. A nano-sized blimp is a perfect candidate for long flight times because helium, a lighter-than-air gas, can provide lift and significantly reduce the energy requirements for flight.

A) The self-sustainable nano-blimp developed at IIS/TIK by our student Kevin Keller. B) The blimp model with solar panel, MCU’s, battery, and rotor.
A) The autonomous nano-blimp developed at IIS/TIK by our student Bence Szebedy. B) The blimp model with on-board camera, MCU’s, battery, and rotors for 3D movements.














In the first project of this series we introduced the nano-blimp. We demonstrated that, thanks to the helium-filled balloon, the energy requirement for hovering is significantly reduced. Then, we extended the functionality of our first self-sustainable blimp prototype introducing additional motors and on-board camera, paving the way for autonomous navigation. We enabled first horizontal movement creating a blimp that is able to move in three dimensions. Then, we expanded the on-board processing capabilities with visual sensors and we incorporated, optimized, and improved a simple object tracking algorithm for autonomous flying nano-size UAVs.


Contact Information

Daniele Palossi
Daniele Palossi


Collaborations

We are pleased to inform our students that we have the opportunity to offer co-supervised Master/Semester Thesis on the Autonomous UAVs topic in collaborations with other top-quality research groups like:

  • TIK: The Computer Engineering and Networks Laboratory - ETH Zürich - Web Site
  • RPG: Robotic and Perception Group - University of Zürich - Web Site
  • MICREL: Microelectronics Laboratory - University of Bologna - Web Site


Projects

Available Projects


Completed Projects


Publications

The group effort and the great contribution from the students of last few years has resulted in the following list of publications:

  • 2018 - D. Palossi et Al., "Extending the Lifetime of Nano-Blimps via Dynamic Motor Control", Springer Journal of Signal Processing Systems (Springer JSPS) - Accepted
  • 2017 - D. Palossi et Al., "Target Following on Nano-Scale Unmanned Aerial Vehicles", 7th IEEE International Workshop on Advances in Sensors and Interfaces, June 15-16, Vieste, Italy, 2017 - On-line
  • 2017 - B. Forsberg et Al., "GPU-Accelerated Real-Time Path Planning and the Predictable Execution Model", International Conference on Computational Science (ICCS), June 12-14, Zürich, Switzerland, 2017 - On-line
  • 2017 - D. Palossi et Al., "On the Accuracy of Near-Optimal CPU-Based Path Planning for UAVs", 20th International Workshop on Software and Compilers for Embedded Systems (SCOPES), June 12-13, Sankt Goar, Germany, 2017 - On-line
  • 2017 - D. Palossi et Al., "Self-sustainability in Nano Unmanned Aerial Vehicles: A Blimp Case Study", Computing Frontiers (CF), May 15-17, Siena, Italy, 2017 - On-line
  • 2017 - D. Palossi et Al., "Ultra Low-Power Visual Odometry for Nano-Scale Unmanned Aerial Vehicles", Design, Automation and Test in Europe (DATE), March 27-31, Lausanne, Switzerland, 2017 - On-line
  • 2016 - D. Palossi et Al., "Exploring Single Source Shortest Path Parallelization on Shared Memory Accelerator", 19th International Workshop on Software and Compilers for Embedded Systems (SCOPES), May 23-25, Sankt Goar, Germany, 2016 - On-line
  • 2016 - D. Palossi et Al., "An Energy-Efficient Parallel Algorithm for Real-Time Near-Optimal UAV Path Planning", 2nd Workshop on Design of Low Power Embedded Systems (LP-EMS), May 16-18, Como, Italy, 2016 - On-line
  • 2016 - F. Conti et Al., "Enabling the Heterogeneous Accelerator Model on Ultra-Low Power Microcontroller Platforms", Design, Automation and Test in Europe (DATE), March 14-18, Dresden, Germany, 2016 - On-line