Difference between revisions of "Digital Medical Ultrasound Imaging"
From iis-projects
(→Highlights of Past Projects) |
|||
(120 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | '''(scroll down for open projects)''' | + | '''(scroll down for open projects)''' |
+ | |||
+ | [[File:Carotid.gif|thumb|700px|Carotid artery extraction via wearable ultrasound]] | ||
+ | |||
+ | ==Our Activities== | ||
+ | |||
+ | At IIS, we are exploring the next generation of medical ultrasound system. Our Flagship projects are: | ||
+ | * '''LightABVS:''' a high-end ultrasound probe, evolution of LightProbe, which incorporates 192 channels and communicates with a host PC via two 100G Ethernet optical links | ||
+ | * '''USdot:''' a reduced number of channels (32), compact, wireless probe for wearable applications | ||
+ | * '''WULPUS:''' an ultra-low power (20mW) probe for long-term monitoring | ||
+ | |||
+ | We focus our ultrasound system developments on the challenges posed by high-speed acquisition and the resulting front-end data rates. Our main goals include the efficient processing and transmission of this data off-head. In addition, we are actively working on developing strategies to manage the power and thermal constraints of these devices. Furthermore, we strive to offer wearable solutions as well as alternatives to the traditional bulky and rigid system designs. | ||
+ | |||
+ | [[File:USdevelopment_addressing_constraints.png|800px]] | ||
+ | |||
+ | |||
+ | This is an ongoing project at our lab and we are looking for motivated students to contribute on the following topics: | ||
+ | * '''Firmware Development''' | ||
+ | ** System level design for hardware-software interactions, multi FPGA system, high bandwidth links (VIVADO/IP/HW-SW Codesign) | ||
+ | ** Programming of software functions: Microcontroller Programming / Processing system programming (C/C++/CUDA) | ||
+ | ** Power/Thermal optimization: Modelling, Control, Task Scheduling (Matlab) | ||
+ | |||
+ | * '''Hardware Development''' | ||
+ | ** Implementation of processing subunits: Hardware design FPGA/ASIC (VHDL/HLS) | ||
+ | ** PCB Design (Altium, Ansys SIwave) | ||
+ | |||
+ | * '''Physical Characterization and Electro-Mechanical Testbeds''' | ||
+ | ** Design of physiological experiments and data analyses (Python) | ||
+ | ** Characterization and Testing (ADS Keysight/Spice/PCB Design/C/Python/Matlab) | ||
+ | |||
+ | * '''Ultrasound Signal Processing and ML''' | ||
+ | ** Machine Learning (Python, MCU, FPGA) | ||
+ | ** Ultrasond imaging algorithm development/improvements/tailoring for implementation (Matlab) | ||
+ | ** Fusion of ultrasound with other biosignals: system, circuit, and algorithm design (Spice, Altium, Python) | ||
+ | |||
+ | ==Who are we== | ||
+ | |||
+ | {| | ||
+ | | style="padding: 10px" | [[File:Andrea_Cossettini.jpg|frameless|left|100px]] | ||
+ | | | ||
+ | ===[[:User:Cosandre | Dr. Andrea Cossettini]]=== | ||
+ | * '''Office''': OAT U27 / ETZ J69.2 | ||
+ | * '''e-mail''': [mailto:cossettini.andrea@iis.ee.ethz.ch cossettini.andrea@iis.ee.ethz.ch], '''phone''': +41 44 63 378 97 | ||
+ | * '''working on''': wearable ultrasound, high-speed ultrasound, optoacoustics | ||
+ | |} | ||
+ | |||
+ | |||
+ | {| | ||
+ | | style="padding: 10px" | [[File:LeitnerChristophPortrait.jpg|frameless|left|100px]] | ||
+ | | | ||
+ | |||
+ | ===[[:User:Cleitne | Dr. Christoph Leitner]]=== | ||
+ | * '''Office''': ETZ J69.2 | ||
+ | * '''e-mail''': [mailto:christoph.leitner@iis.ee.ethz.ch christoph.leitner@iis.ee.ethz.ch], '''phone''': +41 76 686 1179 | ||
+ | * '''working on''': transducers, mixed signal designs and applications | ||
+ | |} | ||
+ | |||
+ | {| | ||
+ | | style="padding: 10px" | [[File:Vsergei_avatar.png|frameless|left|100px]] | ||
+ | | | ||
+ | |||
+ | ===[[:User:Vsergei | Sergei Vostrikov]]=== | ||
+ | * '''Office''': ETZ J69.2 | ||
+ | * '''e-mail''': [mailto:vsergei@iis.ee.ethz.ch vsergei@iis.ee.ethz.ch], '''phone''': +41 76 830 86 95 | ||
+ | * '''working on''': wearable ultrasound | ||
+ | |} | ||
+ | |||
+ | {| | ||
+ | | style="padding: 10px" | [[File:Villanif_avatar_small.jpg|frameless|left|100px]] | ||
+ | | | ||
+ | ===[[:User:Villanif | Federico Villani]]=== | ||
+ | * '''Office''': ETZ J69.2 | ||
+ | * '''e-mail''': [mailto:villanif@ethz.ch villanif@ethz.ch] | ||
+ | * '''working on''': high-speed ultrasound and optoacoustics | ||
+ | |} | ||
+ | |||
+ | {| | ||
+ | | style="padding: 10px" | [[File:SebiFrey.jpg|frameless|left|100px]] | ||
+ | | | ||
+ | |||
+ | ===Sebastian Frey=== | ||
+ | * '''Office''': ETZ J69.2 | ||
+ | * '''e-mail''': [mailto:sefrey@iis.ee.ethz.ch sefrey@iis.ee.ethz.ch] | ||
+ | * '''working on''': wearable ultrasound | ||
+ | |} | ||
+ | |||
+ | ==Highlights of Past Projects== | ||
+ | <gallery mode="slideshow"> | ||
+ | File:ULPdot.jpg|x100px|Ultra-low power Ultrasound dot, sub-20mW PCB - Semester Thesis Sebastian Frey | ||
+ | File:WulpusGestures.jpg|x100px|Ultrasound armband for gesture recognition, Master Thesis Matteo Anderegg | ||
+ | File:LP+.jpg|LightProbe+, Highspeed (12.5GHz) PCB - Master Thesis Raphael Strebel | ||
+ | File:Ultrasound_muscle_pennation_angle.PNG|Pennation angle tracking of human muscles - Semester Thesis Soley Hafthorsdottir | ||
+ | File:LP-wlan.jpg|Wireless Ultrasound Imaging - Master Thesis Matthias Brägger | ||
+ | File:Bubbles.PNG|High-speed (200fps) bubble tracking - Semester Thesis Pascal Jud | ||
+ | </gallery> | ||
+ | |||
+ | ==Open Projects== | ||
+ | '''This is a fast-evolving project area. If you are interested in the topic and want to do something in the areas mentioned above, come to see us to discuss up-to-date project opportunities! Showing up with your own project ideas is also very appreciated.''' | ||
+ | |||
+ | ====Firmware Development==== | ||
+ | <DynamicPageList> | ||
+ | supresserrors = true | ||
+ | category = Available | ||
+ | category = USfw | ||
+ | </DynamicPageList> | ||
+ | ====Hardware Development==== | ||
+ | <DynamicPageList> | ||
+ | supresserrors = true | ||
+ | category = Available | ||
+ | category = UShw | ||
+ | </DynamicPageList> | ||
+ | ====Physical Characterization and Electro-Mechanical Testbeds==== | ||
+ | <DynamicPageList> | ||
+ | supresserrors = true | ||
+ | category = Available | ||
+ | category = UScharacterization | ||
+ | </DynamicPageList> | ||
+ | ====Ultrasound Signal Processing and ML==== | ||
+ | <DynamicPageList> | ||
+ | supresserrors = true | ||
+ | category = Available | ||
+ | category = USsignals | ||
+ | </DynamicPageList> | ||
+ | |||
+ | All projects are annotated with one or more possible ''project types'' (M/S/B/G) and a ''number of students'' (1 to 3). | ||
+ | |||
+ | * '''M''': Master's thesis: ''26 weeks'' full-time (6 months) for ''one student only'' | ||
+ | * '''S''': Semester project: ''14 weeks'' half-time (1 semester lecture period) or ''7 weeks'' full-time for ''1-3 students'' | ||
+ | * '''B''': Bachelor's thesis: ''14 weeks'' half-time (1 semester lecture period) for ''one student only'' | ||
+ | * '''G''': Group project: ''14 weeks'' part-time (1 semester lecture period) for ''2-3 students'' | ||
+ | |||
+ | Usually, these are merely suggestions from our side; proposals can often be reformulated to fit students' needs. | ||
+ | |||
+ | == Projects in Progress== | ||
+ | <DynamicPageList> | ||
+ | supresserrors = true | ||
+ | category = In progress | ||
+ | category = Ultrasound | ||
+ | </DynamicPageList> | ||
+ | |||
+ | ==Completed Projects== | ||
+ | <DynamicPageList> | ||
+ | supresserrors = true | ||
+ | category = Completed | ||
+ | category = Ultrasound | ||
+ | </DynamicPageList> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <!-- | ||
+ | ############################################# | ||
+ | ############################################# | ||
+ | ################ OLD HP ##################### | ||
+ | ############################################# | ||
+ | ############################################# | ||
+ | |||
+ | |||
+ | '''(scroll down for open projects)''' | ||
+ | |||
+ | [[File:Carotid.gif|thumb|700px|Carotid artery extraction via wearable ultrasound]] | ||
+ | |||
+ | ==Our Activities== | ||
[[File:Ultralight.jpg|thumb|300px|Ultrasound Imaging System]] | [[File:Ultralight.jpg|thumb|300px|Ultrasound Imaging System]] | ||
Line 6: | Line 170: | ||
At IIS, we are exploring the next generation of medical ultrasound imaging systems: | At IIS, we are exploring the next generation of medical ultrasound imaging systems: | ||
− | |||
− | |||
− | |||
− | |||
− | + | - LightProbe: a programmable ultrasound transducer head, which incorporates the entire analog frontend and directly outputs the captured digital samples. This allows the LightProbe to be directly connected to any commodity hardware (phone, tablet, workstation) for post-processing over a standard digital link as simple as a standard peripheral, like a camera. | |
+ | - LightABVS: a high-end ultrasound probe, evolution of LightProbe, which incorporates 192 channels and communicates with a host PC via two 100G Ethernet optical links | ||
+ | - TinyProbe: a reduced number of channels (32), compact, wireless probe for wearable applications | ||
+ | - ULP-probe: an ultra-low power (20mW) probe for long-term monitoring | ||
+ | Ultrasound systems have two main challenges: the high data-rates produced by the frontend (which need to be processed and transported off-head), and the power/thermal constraints of such devices. | ||
This is an ongoing project at our lab and we are looking for motivated students to contribute on the following topics: | This is an ongoing project at our lab and we are looking for motivated students to contribute on the following topics: | ||
− | + | ||
− | + | - Implementation of processing subunits: Hardware design FPGA/ASIC (VHDL/HLS) | |
− | + | - Programming of software functions: Microcontroller Programming / Processing system programming (C/C++/CUDA) | |
− | + | - System level design for hardware-software interactions, multi FPGA system, high bandwidth links (VIVADO/IP/HW-SW Codesign) | |
− | + | - Power/Thermal optimization: Modelling, Control, Task Scheduling (Matlab) | |
− | + | - Design of physiological experiments and data analyses (Python) | |
− | + | - Machine Learning (Python, MCU, FPGA) | |
+ | - Ultrasond imaging algorithm development/improvements/tailoring for implementation (Matlab) | ||
+ | - Fusion of ultrasound with other biosignals: system, circuit, and algorithm design (Spice, Altium, Python) | ||
+ | - PCB Design (Altium, Ansys SIwave) | ||
If you are interested in any of the above topics, contact us. | If you are interested in any of the above topics, contact us. | ||
+ | |||
+ | ==Who are we== | ||
+ | |||
+ | {| | ||
+ | | style="padding: 10px" | [[File:Andrea_Cossettini.jpg|frameless|left|100px]] | ||
+ | | | ||
+ | ===[[:User:Cosandre | Dr. Andrea Cossettini]]=== | ||
+ | |||
+ | - '''Office''': OAS J34 / ETZ J65 | ||
+ | - '''e-mail''': [[mailto:cossettini.andrea@iis.ee.ethz.ch](mailto:cossettini.andrea@iis.ee.ethz.ch) [cossettini.andrea@iis.ee.ethz.ch](mailto:cossettini.andrea@iis.ee.ethz.ch)] | ||
+ | - '''phone''': +41 44 63 378 97 | ||
+ | |} | ||
+ | |||
+ | {| | ||
+ | | style="padding: 10px" | [[File:LeitnerChristophPortrait.jpg|frameless|left|100px]] | ||
+ | | | ||
+ | ===[[:User:Cleitne | Dr. Christoph Leitner]]=== | ||
+ | |||
+ | - '''Office''': ETZ J65 | ||
+ | - '''e-mail''': [[mailto:christoph.leitner@iis.ee.ethz.ch](mailto:christoph.leitner@iis.ee.ethz.ch) [christoph.leitner@iis.ee.ethz.ch](mailto:christoph.leitner@iis.ee.ethz.ch)] | ||
+ | - '''phone''': +41 76 686 1179 | ||
+ | |} | ||
+ | |||
+ | {| | ||
+ | | style="padding: 10px" | [[File:Vsergei_avatar.png|frameless|left|100px]] | ||
+ | | | ||
+ | ===[[:User:Vsergei | Sergei Vostrikov]]=== | ||
+ | |||
+ | - '''Office''': ETZ J78 | ||
+ | - '''e-mail''': [[mailto:vsergei@iis.ee.ethz.ch](mailto:vsergei@iis.ee.ethz.ch) [vsergei@iis.ee.ethz.ch](mailto:vsergei@iis.ee.ethz.ch)] | ||
+ | - '''phone''': +41 76 830 86 95 | ||
+ | |} | ||
+ | |||
+ | {| | ||
+ | | style="padding: 10px" | [[File:Villanif_avatar_small.jpg|frameless|left|100px]] | ||
+ | | | ||
+ | |||
+ | ===[[:User:Villanif | Federico Villani]]=== | ||
+ | |||
+ | - '''Office''': ETZ K78.3 | ||
+ | - '''e-mail''': [[mailto:villanif@ethz.ch](mailto:villanif@ethz.ch) [villanif@ethz.ch](mailto:villanif@ethz.ch)] | ||
+ | |} | ||
+ | |||
+ | {| | ||
+ | | style="padding: 10px" | [[File:SebiFrey.jpg|frameless|left|100px]] | ||
+ | | | ||
+ | |||
+ | ===Sebastian Frey=== | ||
+ | |||
+ | - '''Office''': ETZ J78 | ||
+ | - '''e-mail''': [[mailto:sefrey@iis.ee.ethz.ch](mailto:sefrey@iis.ee.ethz.ch) [sefrey@iis.ee.ethz.ch](mailto:sefrey@iis.ee.ethz.ch)] | ||
+ | |} | ||
==Highlights of Past Projects== | ==Highlights of Past Projects== | ||
<gallery mode="slideshow"> | <gallery mode="slideshow"> | ||
− | File:ULPdot.jpg|Ultra-low power Ultrasound dot, sub-20mW PCB - Semester Thesis Sebastian Frey | + | File:ULPdot.jpg|x100px|Ultra-low power Ultrasound dot, sub-20mW PCB - Semester Thesis Sebastian Frey |
File:LP+.jpg|LightProbe+, Highspeed (12.5GHz) PCB - Master Thesis Raphael Strebel | File:LP+.jpg|LightProbe+, Highspeed (12.5GHz) PCB - Master Thesis Raphael Strebel | ||
File:Ultrasound_muscle_pennation_angle.PNG|Pennation angle tracking of human muscles - Semester Thesis Soley Hafthorsdottir | File:Ultrasound_muscle_pennation_angle.PNG|Pennation angle tracking of human muscles - Semester Thesis Soley Hafthorsdottir | ||
Line 35: | Line 254: | ||
==Open Projects== | ==Open Projects== | ||
− | '''This is a fast-evolving project area. If you are interested in the topic and want to do something in the areas mentioned above, come to see us to discuss up-to-date project opportunities! Showing up with your own project ideas is also very appreciated.''' | + | '''This is a fast-evolving project area. If you are interested in the topic and want to do something in the areas mentioned above, come to see us to discuss up-to-date project opportunities! Showing up with your own project ideas is also very appreciated.''' |
<DynamicPageList> | <DynamicPageList> | ||
supresserrors = true | supresserrors = true | ||
Line 55: | Line 274: | ||
category = Ultrasound | category = Ultrasound | ||
</DynamicPageList> | </DynamicPageList> | ||
− | + | --!> | |
− | |||
− | |||
− |
Latest revision as of 10:45, 24 July 2023
(scroll down for open projects)
Contents
Our Activities
At IIS, we are exploring the next generation of medical ultrasound system. Our Flagship projects are:
- LightABVS: a high-end ultrasound probe, evolution of LightProbe, which incorporates 192 channels and communicates with a host PC via two 100G Ethernet optical links
- USdot: a reduced number of channels (32), compact, wireless probe for wearable applications
- WULPUS: an ultra-low power (20mW) probe for long-term monitoring
We focus our ultrasound system developments on the challenges posed by high-speed acquisition and the resulting front-end data rates. Our main goals include the efficient processing and transmission of this data off-head. In addition, we are actively working on developing strategies to manage the power and thermal constraints of these devices. Furthermore, we strive to offer wearable solutions as well as alternatives to the traditional bulky and rigid system designs.
This is an ongoing project at our lab and we are looking for motivated students to contribute on the following topics:
- Firmware Development
- System level design for hardware-software interactions, multi FPGA system, high bandwidth links (VIVADO/IP/HW-SW Codesign)
- Programming of software functions: Microcontroller Programming / Processing system programming (C/C++/CUDA)
- Power/Thermal optimization: Modelling, Control, Task Scheduling (Matlab)
- Hardware Development
- Implementation of processing subunits: Hardware design FPGA/ASIC (VHDL/HLS)
- PCB Design (Altium, Ansys SIwave)
- Physical Characterization and Electro-Mechanical Testbeds
- Design of physiological experiments and data analyses (Python)
- Characterization and Testing (ADS Keysight/Spice/PCB Design/C/Python/Matlab)
- Ultrasound Signal Processing and ML
- Machine Learning (Python, MCU, FPGA)
- Ultrasond imaging algorithm development/improvements/tailoring for implementation (Matlab)
- Fusion of ultrasound with other biosignals: system, circuit, and algorithm design (Spice, Altium, Python)
Who are we
Dr. Andrea Cossettini
|
Dr. Christoph Leitner
|
Sergei Vostrikov
|
Federico Villani
|
Sebastian Frey
|
Highlights of Past Projects
Open Projects
This is a fast-evolving project area. If you are interested in the topic and want to do something in the areas mentioned above, come to see us to discuss up-to-date project opportunities! Showing up with your own project ideas is also very appreciated.
Firmware Development
- Design of combined Ultrasound and PPG systems
- Improving datarate and efficiency of ultra low power wearable ultrasound
- Battery indifferent wearable Ultrasound
- Wearable Ultrasound for Artery monitoring
- Automatic unplugging detection for Ultrasound probes
Hardware Development
- Integrating Ultrasound Technology into a Fitness Tracking Device (1M, 2 B/S)
- Design of combined Ultrasound and PPG systems
- Battery indifferent wearable Ultrasound
Physical Characterization and Electro-Mechanical Testbeds
- Skin Coupling Media Characterization For Fitness Tracker Applications (1 B/S)
- Adaptively Controlled Polarization And Hysteresis Curve Tracing For Polymer Piezoelectrics (1 S/B)
- Development Of A Test Bed For Ultrasonic Transducer Characterization (1 S/B)
- Ultrasound Doppler system development
Ultrasound Signal Processing and ML
- Ultrasound image data recycler
- Wearable Ultrasound for Artery monitoring
- Ultrasound Doppler system development
- Machine Learning for extracting Muscle features from Ultrasound raw data
- Machine Learning on Ultrasound Images
- Visualizing Functional Microbubbles using Ultrasound Imaging
All projects are annotated with one or more possible project types (M/S/B/G) and a number of students (1 to 3).
- M: Master's thesis: 26 weeks full-time (6 months) for one student only
- S: Semester project: 14 weeks half-time (1 semester lecture period) or 7 weeks full-time for 1-3 students
- B: Bachelor's thesis: 14 weeks half-time (1 semester lecture period) for one student only
- G: Group project: 14 weeks part-time (1 semester lecture period) for 2-3 students
Usually, these are merely suggestions from our side; proposals can often be reformulated to fit students' needs.
Projects in Progress
No pages meet these criteria.
Completed Projects
- Ultrasound based hand gesture recognition
- Design of combined Ultrasound and Electromyography systems
- Ultra low power wearable ultrasound probe
- Machine Learning for extracting Muscle features using Ultrasound 2
- Ultrasound Low power WiFi with IMX7
- Ultrasound signal processing acceleration with CUDA
- Minimum Variance Beamforming for Wearable Ultrasound Probes
- Machine Learning for extracting Muscle features using Ultrasound
- Compression of Ultrasound data on FPGA
- LightProbe - 200G Remote DMA for GPU FPGA Data Transfers
- Time Gain Compensation for Ultrasound Imaging
- LightProbe - WIFI extension (PCB)
- LightProbe - Implementation of compressed-sensing algorithms