Personal tools

Influence of the Initial Filament Geometry on the Forming Step in CBRAM.

From iis-projects

Revision as of 17:07, 16 September 2021 by Emborasa (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Short Description

Conductive bridging RAM (CBRAM)is operated via the formation and disruption of a metallic filament between two metal electrodes. The presence or absence of such a bridging filament results in a low (ON) or high (OFF) resistance state, respectively. The filament formation/disruption is controlled by applying an external voltage. In this project, you will focus on the so-called forming step, the initial formation of a metallic filament in an “unused” device. Starting from different electrodes with pre-definedfilament geometries (e.g. cone-shaped, see figure), you will evaluate their influence on the switching dynamics. The simulations will be performed by LAMMPS, a molecular dynamics simulator using force fields, and the resulting trajectories will be analyzed by your own Matlab scripts.

The Big Picture

Well-established memory technologies such as Flash and dynamic RAM (DRAM) have nearly reached their scaling limits in integration density while being limited in operating speed. Furthermore, more energy-efficient memory storage options could reduce its operating costs. CBRAMis a promising candidate that could address these issues.Unfortunately, the filament formation and dissolution mechanism remains poorly known.However, a more detailed understanding of these processes is essentialto increase the filament stability and the reliability of CBRAM as a device.Thus, investigations on an atomic level by the usage of computer-aided design (TCAD) tools are required.

Status: Available

Looking for 1 semester student
Interested candidates please contact: Jan Aeschlimann


Prerequisites

We are seeking for a candidate with a general interest in molecular modelling techniques(no former experience required). Basic knowledge in MATLAB is advantageous.

Character

20% theory, 10% model development, 70% simulation and analysis.

Professor

Mathieu Luisier

↑ top