Difference between revisions of "High Performance SoCs"
From iis-projects
(→Matheus De Araujo Cavalcante) |
|||
(10 intermediate revisions by 3 users not shown) | |||
Line 50: | Line 50: | ||
|} | |} | ||
+ | {| | ||
+ | | style="padding: 10px" | [[File:Tbenz_face_pulp_team.jpg|frameless|left|96px]] | ||
+ | | | ||
===[[:User:Tbenz | Thomas Benz]]=== | ===[[:User:Tbenz | Thomas Benz]]=== | ||
* '''e-mail''': [mailto:tbenz@iis.ee.ethz.ch tbenz@iis.ee.ethz.ch] | * '''e-mail''': [mailto:tbenz@iis.ee.ethz.ch tbenz@iis.ee.ethz.ch] | ||
* '''phone''': +41 44 632 05 18 | * '''phone''': +41 44 632 05 18 | ||
* '''office''': ETZ J85 | * '''office''': ETZ J85 | ||
+ | |} | ||
+ | {| | ||
+ | | style="padding: 10px" | [[File:Nwistoff_face_pulp_team.JPG|frameless|left|96px]] | ||
+ | | | ||
===[[:User:Nwistoff | Nils Wistoff]]=== | ===[[:User:Nwistoff | Nils Wistoff]]=== | ||
* '''e-mail''': [mailto:nwistoff@iis.ee.ethz.ch nwistoff@iis.ee.ethz.ch] | * '''e-mail''': [mailto:nwistoff@iis.ee.ethz.ch nwistoff@iis.ee.ethz.ch] | ||
* '''phone''': +41 44 632 06 75 | * '''phone''': +41 44 632 06 75 | ||
* '''office''': ETZ J85 | * '''office''': ETZ J85 | ||
+ | |} | ||
+ | {| | ||
+ | | style="padding: 10px" | [[File:Mperotti_face_pulp_team.jpg|frameless|left|96px]] | ||
+ | | | ||
+ | ===[[:User:Mperotti | Matteo Perotti]]=== | ||
+ | * '''e-mail''': [mailto:mperotti@iis.ee.ethz.ch mperotti@iis.ee.ethz.ch] | ||
+ | * '''phone''': +41 44 632 05 25 | ||
+ | * '''office''': ETZ J85 | ||
+ | |} | ||
+ | |||
+ | {| | ||
+ | | style="padding: 10px" | [[File:Sriedel_face_pulp_team.jpg|frameless|left|96px]] | ||
+ | | | ||
===[[:User:Sriedel | Samuel Riedel]]=== | ===[[:User:Sriedel | Samuel Riedel]]=== | ||
* '''e-mail''': [mailto:sriedel@iis.ee.ethz.ch sriedel@iis.ee.ethz.ch] | * '''e-mail''': [mailto:sriedel@iis.ee.ethz.ch sriedel@iis.ee.ethz.ch] | ||
* '''phone''': +41 44 632 65 69 | * '''phone''': +41 44 632 65 69 | ||
* '''office''': ETZ J71.2 | * '''office''': ETZ J71.2 | ||
+ | |} | ||
+ | {| | ||
+ | | style="padding: 10px" | [[File:Matheusd_face_1to1.png|frameless|left|96px]] | ||
+ | | | ||
===[[:User:Matheusd | Matheus Cavalcante]]=== | ===[[:User:Matheusd | Matheus Cavalcante]]=== | ||
* '''e-mail''': [mailto:matheusd@iis.ee.ethz.ch matheusd@iis.ee.ethz.ch] | * '''e-mail''': [mailto:matheusd@iis.ee.ethz.ch matheusd@iis.ee.ethz.ch] | ||
* '''phone''': +41 44 632 54 96 | * '''phone''': +41 44 632 54 96 | ||
* '''office''': ETZ J69.2 | * '''office''': ETZ J69.2 | ||
+ | |} | ||
+ | {| | ||
+ | | style="padding: 10px" | [[File:Akurth_face_pulp_team.jpeg|frameless|left|96px]] | ||
+ | | | ||
===[[:User:Akurth | Andreas Kurth]]=== | ===[[:User:Akurth | Andreas Kurth]]=== | ||
* '''e-mail''': [mailto:akurth@iis.ee.ethz.ch akurth@iis.ee.ethz.ch] | * '''e-mail''': [mailto:akurth@iis.ee.ethz.ch akurth@iis.ee.ethz.ch] | ||
* '''phone''': +41 44 632 04 87 | * '''phone''': +41 44 632 04 87 | ||
* '''office''': ETZ J69.2 | * '''office''': ETZ J69.2 | ||
+ | |} | ||
+ | {| | ||
+ | | style="padding: 10px" | [[File:Zarubaf_face_pulp_team.jpg|frameless|left|96px]] | ||
+ | | | ||
===[[:User:Zarubaf | Florian Zaruba]]=== | ===[[:User:Zarubaf | Florian Zaruba]]=== | ||
* '''e-mail''': [mailto:zarubaf@iis.ee.ethz.ch zarubaf@iis.ee.ethz.ch] | * '''e-mail''': [mailto:zarubaf@iis.ee.ethz.ch zarubaf@iis.ee.ethz.ch] | ||
* '''phone''': +41 44 632 65 56 | * '''phone''': +41 44 632 65 56 | ||
* '''office''': ETZ J89 | * '''office''': ETZ J89 | ||
+ | |} | ||
+ | {| | ||
+ | | style="padding: 10px" | [[File:Fschuiki_face_pulp_team.jpg|frameless|left|96px]] | ||
+ | | | ||
===[[:User:Fschuiki | Fabian Schuiki]]=== | ===[[:User:Fschuiki | Fabian Schuiki]]=== | ||
* '''e-mail''': [mailto:fschuiki@iis.ee.ethz.ch fschuiki@iis.ee.ethz.ch] | * '''e-mail''': [mailto:fschuiki@iis.ee.ethz.ch fschuiki@iis.ee.ethz.ch] | ||
* '''phone''': +41 44 632 67 89 | * '''phone''': +41 44 632 67 89 | ||
* '''office''': ETZ J89 | * '''office''': ETZ J89 | ||
− | + | |} | |
− | |||
− | |||
− | |||
− | |||
− | |||
<!-- | <!-- | ||
Line 105: | Line 136: | ||
category = High Performance SoCs | category = High Performance SoCs | ||
suppresserrors=true | suppresserrors=true | ||
+ | ordermethod=sortkey | ||
+ | order=ascending | ||
</DynamicPageList> | </DynamicPageList> | ||
Line 112: | Line 145: | ||
category = Digital | category = Digital | ||
category = High Performance SoCs | category = High Performance SoCs | ||
− | suppresserrors= | + | suppresserrors=false |
+ | ordermethod=sortkey | ||
+ | order=ascending | ||
</DynamicPageList> | </DynamicPageList> | ||
Line 121: | Line 156: | ||
category = High Performance SoCs | category = High Performance SoCs | ||
suppresserrors=true | suppresserrors=true | ||
+ | </DynamicPageList> | ||
+ | |||
+ | ===Reserved Projects=== | ||
+ | <DynamicPageList> | ||
+ | category = Reserved | ||
+ | category = Digital | ||
+ | category = High Performance SoCs | ||
+ | suppresserrors=true | ||
+ | ordermethod=sortkey | ||
+ | order=ascending | ||
</DynamicPageList> | </DynamicPageList> |
Latest revision as of 16:21, 11 November 2020
High-Performance Systems-on-Chip
Today, a multitude of data-driven applications such as machine learning, scientific computing, and big data demand an ever-increasing amount of parallel floating-point performance from computing systems. Increasingly, such applications must scale across a wide range of applications and energy budgets, from supercomputers simulating next week's weather to your smartphone cameras correcting for low light conditions.
This brings challenges on multiple fronts:
- Energy Efficiency becomes a major concern: As logic density increases, supplying these systems with energy and managing their heat dissipation requires increasingly complex solutions.
- Memory bandwidth and latency become a major bottleneck as the amount of processed data increases. Despite continuous advances, memory lags behind computing in scaling, and many data-driven problems today are memory-bound.
- Parallelization and scaling bring challenges of their own: on-chip interconnects may introduce significant area and performance overheads as they grow, and both the data and instruction streams of cores may compete for valuable memory bandwidth and interfere in a destructive way.
While all state-of-the-art high-performance computing systems are constrained by the above issues, they are also subject to a fundamental trade-off between efficiency and flexibility. This forms a design space which includes the following paradigms:
- Accelerators are designed to do one thing very well: they are very energy efficient and performant and usually offer predetermined data movement. However, they are not or barely programmable, inflexible, and monolithic in their design.
- Superscalar Out-of-Order CPUs, on the other end, provide extreme flexibility, full programmability, and reasonable performance across various workloads. However, they require large area and energy overheads for a given performance, use memory inefficiently, and are often hard to scale well to manycore systems.
- GPUs are parallel and data-oriented by design, yet still meaningfully programmable, aiming for a sweet-spot between scalability, efficiency, and programmability. However, are still subject to memory access challenges and often require manual memory management for decent performance.
How can we further improve on these existing paradigms? Can we design decently efficient and performant, yet freely programmable systems with scalable, performant memory systems?
If these questions sound intriguing to you, consider joining us for a project or thesis! You can find currently available projects and our contact information below.
Our Activities
We are primarily interested in architecture design and hardware implementation for high-performance systems. However, ensuring high performance requires us to consider the entire hardware-software stack:
- HPC Software: Design and porting of high-performance applications, benchmarks, compiler tools, and operating systems (Linux) to our hardware.
- Hardware-software codesign: Design of performance-aware algorithms and kernels and hardware that can be efficiently programmed for use in processor-based systems.
- Architecture: RTL implementation of energy-efficient designs with an emphasis on high utilization and throughput, as well as on efficient interoperability with existing IPs.
- SoC design and Implementation: Design of full high-performance systems-on-chips; implementation and tapeout on modern silicon technologies such as TSMC's 65 nm and GlobalFoundries' 22 nm nodes.
- IC testing and Board-Level design: Testing of the returning chips with industry-grade automated test equipment (ATE) and design of system-level demonstrator boards.
Our current interests include systems with low control-to-compute ratios, high-performance on-chip interconnects, and scalable many-core systems. However, we are always happy to explore new domains; if you have an interesting idea, contact us and we can discuss it in detail!
Who are we
Paul Scheffler
|
Thomas Benz
|
Nils Wistoff
|
Matteo Perotti
|
Samuel Riedel
|
Matheus Cavalcante
|
Andreas Kurth
|
Florian Zaruba
|
Fabian Schuiki
|
Projects
Available Projects
- Coherence-Capable Write-Back L1 Data Cache for Ariane (M)
- Efficient Synchronization of Manycore Systems (M/1S)
- Evaluating memory access pattern specializations in OoO, server-grade cores (M)
- Hypervisor Extension for Ariane (M)
- Investigation of the high-performance multi-threaded OoO IBM A2O Core (1-3S)
- IP-Based SoC Generation and Configuration (1-3S/B)
- Manycore System on FPGA (M/S/G)
- Physical Implementation of Ara, PULP's Vector Machine (1-2S)
- RISC-V base ISA for ultra-low-area cores (2-3G)
- SystemVerilog formatter for our LowRISC-based guidelines (2-3G)
- Towards the Ariane Desktop: Display Output for Ariane on FPGA under Linux (S/B/G)
- Transforming MemPool into a CGRA (M)
Projects In Progress
- A Flexible Peripheral System for High-Performance Systems on Chip (M)
- A Snitch-Based SoC on iCE40 FPGAs (1-2S/B)
- An RPC DRAM Implementation for Energy-Efficient ASICs (1-2S)
- Bringup and Evaluation of an Energy-efficient Heterogeneous Manycore Compute Platform (1-2S)
- ISA extensions in the Snitch Processor for Signal Processing (M)
- LLVM and DaCe for Snitch (1-2S)
- Multi issue OoO Ariane Backend (M)
- Ottocore: A Minimal RISC-V Core Designed for Teaching (B/2G)
- Physical Implementation of MemPool, PULP's Manycore System (1M/1-2S)
Completed Projects